Generalized Communities in Networks

Tiago P. Peixoto

Universität Bremen Germany

> ISI Foundation Turin, Italy

M. E. J. Newman

University of Michigan & Santa Fe Institute
USA

Seoul, June 2016

THE STOCHASTIC BLOCK MODEL (SBM)

P. W. HOLLAND ET AL., SOC NETWORKS 5, 109 (1983)

Large-scale modules: *N* nodes divided into *B* groups.

Parameters: $b_i \rightarrow \text{group membership of node } i$

 $p_{rs} \rightarrow$ probability of an edge between nodes of groups r

and s.

Properties:

- ► *General* model for large-scale structures. Traditional assortative communities are a special case, but it also admits arbitrary mixing patterns (e.g. bipartite, core-periphery, etc).
- ► Formulation for directed graphs is trivial.

LATENT SPACE MODELS

P. D. Hoff, A. E. Raferty, and M. S. Handcock, J. Amer. Stat. Assoc. 97, 1090–1098 (2002)

$$P(G|\{\vec{x}_i\}) = \prod_{i>j} p_{ij}^{A_{ij}} (1 - p_{ij})^{1 - A_{ij}}$$

$$p_{ij} = \exp\left(-\left(\vec{x}_i - \vec{x}_j\right)^2\right).$$

(Human connectome)

Many other more elaborate embeddings (e.g. hyperbolic spaces). Properties:

- ► *Softer approach*: Nodes are not placed into discrete categories.
- ► Exclusively *assortative* structures.
- ► Formulation for directed graphs less trivial.

DISCRETE VS. CONTINUOUS

Can we formulate a unified parametrization?

THE GRAPHON

$$P(G|\{x_i\}) = \prod_{i>j} p_{ij}^{A_{ij}} (1 - p_{ij})^{1 - A_{ij}}$$
$$p_{ij} = \omega(x_i, x_j)$$
$$x_i \in [0, 1]$$

Properties:

- ► Mostly a theoretical tool.
- Cannot be directly inferred (without massively overfitting).
- ▶ Needs to be parametrized to be practical.

The SBM \rightarrow a piecewise-constant Graphon

A "SOFT" GRAPHON PARAMETRIZATION

$$p_{uv} = \frac{d_u d_v}{2m} \omega(x_u, x_v)$$
$$\omega(x, y) = \sum_{j,k=0}^{N} c_{jk} B_j(x) B_k(y)$$

Bernstein polynomials:

$$B_k(x) = \binom{N}{k} x^k (1-x)^{N-k}, \qquad k = 0 ... N$$

A "SOFT" GRAPHON PARAMETRIZATION

$$p_{uv} = \frac{d_u d_v}{2m} \omega(x_u, x_v)$$

$$\omega(x, y) = \sum_{j,k=0}^{N} c_{jk} B_j(x) B_k(y)$$

Bernstein polynomials:

$$B_k(x) = \binom{N}{k} x^k (1-x)^{N-k}, \qquad k = 0...N$$

Inferring the model

SEMI-PARAMETRIC BAYESIAN APPROACH

Expectation-Maximization algorithm

1. Expectation step

$$q(\mathbf{x}) = \frac{P(\mathbf{A}, \mathbf{x} | \mathbf{c})}{\int P(\mathbf{A}, \mathbf{x} | \mathbf{c}) d^n \mathbf{x}}$$

2. Maximization step

$$P(\mathbf{A}|\mathbf{c}) = \int P(\mathbf{A}, \mathbf{x}|\mathbf{c}) d^{n}\mathbf{x}$$
$$\hat{c}_{jk} = \underset{c_{jk}}{\operatorname{argmax}} P(\mathbf{A}|\mathbf{c})$$

Belief-Propagation

$$\eta_{u \to v}(x) = \frac{1}{Z_{u \to v}} \exp\left(-\sum_{w} d_u d_w \int_0^1 q_w(y) \omega(x, y) \mathrm{d}y\right)$$
$$\times \prod_{\substack{w(\neq v) \\ d_{vm} = 1}} \int_0^1 \eta_{w \to u}(y) \omega(x, y) \mathrm{d}y,$$

$$q_{uv}(x,y) = \frac{\eta_{u \to v}(x)\eta_{v \to u}(y)\omega(x,y)}{\int_0^1 \eta_{u \to v}(x)\eta_{v \to u}(y)\omega(x,y)\mathrm{d}x\mathrm{d}y}.$$

Algorithmic complexity: $O(mN^2)$

EXAMPLE: SBM SAMPLE

EXAMPLE: SCHOOL FRIENDSHIPS

EXAMPLE: C. ELEGANS WORM

EXAMPLE: C. ELEGANS WORM

EXAMPLE: INTERSTATE HIGHWAY

THE END

Main message:

- ► "Soft" generative model.
- ► Continuous latent space.
- ► Arbitrary mixing patterns.

Todo:

- ► Fully Bayesian inference & model selection.
- ▶ More spatial dimensions.

M.E.J. Newman, T. P. Peixoto, PRL 115, 088701 (2015)