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Representative community divisions of networks

Alec Kirkley! and M. E. J. Newman! 2

! Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA

Methods for detecting community structure in networks typically aim to identify a single best
partition of network nodes into communities, often by optimizing some objective function. However,
in real-world applications there are typically many competitive partitions with objective scores close
to that of the global optimum and the true community structure is more properly represented by an
entire set of high-scoring partitions than by just the single optimum. Such a set can be difficult to
interpret since its size can easily run to hundreds or thousands of partitions. In this paper we present
a solution to this problem in the form of an efficient method that clusters similar partitions into
groups and then identifies an archetypal partition as a representative of each group. The result is a
succinct, human-readable summary of the form and variety of community structure in any network.
We demonstrate the method on a range of example networks.

I. INTRODUCTION

Networks are widely used as a compact quantitative
representation of a range of complex systems, particu-
larly in the biological and social sciences, engineering,
computer science, and physics. Many networks naturally
divide into communities, densely connected groups of
nodes with sparser between-group connections [I]. Iden-
tifying these groups, in the process known as community
detection, can help us in understanding network phenom-
ena such as the evolution of social relationships [2], epi-
demic spreading [3], and others.

There are numerous existing methods for commu-
nity detection, including ones based on centrality mea-
sures [4], modularity [5], information theory [6], and
Bayesian generative models [7]—see [§] for a review.
Most methods represent the community structure in a
network as a single network partition or division (an as-
signment of each node to a specific community), which is
typically the one that attains the highest score according
to some objective function. As pointed out by many pre-
vious authors, however, there may be multiple partitions
of a network that achieve high scores, any of which could
be a good candidate for division of the network [9HI4].
With this in mind some community detection methods,
including methods based on modularity and on genera-
tive models, return multiple plausible partitions rather
than just one. But while these algorithms give a more
complete picture of community structure, they have their
own problems. In particular, the number of partitions
returned is often very large. Even for relatively small
networks the partitions may number in the hundreds or
thousands, far more than any human observer can rea-
sonably comprehend. How then are we supposed to make
sense of the output of these calculations?

In some cases it may happen that all of the plausible
divisions of a network are quite similar to each other,
in which case we may be able to form a consensus clus-
tering [15], a single partition that is representative of
the entire set in the same way that the mean of a set
of numbers can be a useful representation of the whole.

However, if the partitions vary substantially, then some
of them may be very different from the consensus cluster-
ing and hence the consensus will fail to capture the full
range of behaviors in the same way that the mean can be
a poor summary statistic for broad or multimodal distri-
butions of numbers. In cases like these, summarizing the
community structure may require not just one but sev-
eral representative partitions, which may themselves be
consensus partitions for a local cluster of network divi-
sions [I4]. In this paper, we present a simple and efficient
method for finding such representative partitions. Given
a large set of possible structures returned by a commu-
nity detection algorithm, our method finds a smaller set
that capture the main variants and possibilities while re-
maining comprehensible to human users.

In effect, our method clusters the partitions into a
small number of representative subsets, in a manner
somewhat akin to traditional methods for clustering nu-
merical data in high-dimensional data spaces. A few
previous studies have investigated the clustering of par-
titions. Calatayud et al. [I6] proposed an algorithm
that starts with the single highest scoring partition (un-
der whatever objective function is in use), then iterates
through other divisions in order of decreasing score and
assigns each to the closest cluster if the distance to that
cluster is less than a certain threshold, or starts a new
cluster otherwise. This approach is fast but somewhat
ad hoc and highly sensitive to the distance threshold in
many cases. It also has the disadvantage of requiring
us to choose a distance function between partitions [17]
and the results turn out to be quite sensitive to this
choice also. Peixoto [I4] has proposed a principled sta-
tistical method that identifies representative partitions
using methods of Bayesian inference. In this method,
rather than assigning a single group label to each node
in a representative partition, one defines a distribution
over labels that gives the marginal probability that the
node is in each community among all the partitions in a
cluster. This method works well in many respects but is
quite complicated to explain and to implement, and even
for small networks it typically returns a large number of
similar representative partitions, arguably too large for



simple interpretation.

The method we propose here is based on fundamental
information theoretic principles and has the advantage
that it does not require the explicit choice of any parti-
tion distance function and typically returns only a small
number of representative partitions, each of which is a
true network partition rather than a probability distri-
bution. Our approach is based on the principle of mini-
mum description length, which states that when selecting
between possible models for a data set, the best model
is the one that permits the most succinct representation
of the data [I8]. In our context, we seek to capture the
information contained in a set of community divisions
returned by some community detection algorithm using
a model that consists of a few representative partitions
that are used to reconstruct the clusters around them.
The description length principle has been used in the
past for clustering real-valued (non-network) data, in-
cluding methods based on Gaussian mixture models [19],
hierarchical clustering [20], Bernoulli mixture models for
categorical data [2I], and probabilistic generative mod-
els [22]. Georgieva et al. [23], for instance, have proposed
a clustering framework that is similar in some respects to
ours but for real-valued vector data. As in our approach
the data are thought of as a message to be transmitted in
multiple parts, including the cluster centers and the data
within each cluster. Georgieva et al., however, only use
their measure as a quality function to assess the outputs
of other clustering algorithms and not as an objective to
be optimized to obtain the clusters themselves.

Our algorithm takes as input a set of divisions of a
network into communities, which may be obtained in any
manner we like. Common methods for generating such
divisions are sampling from probabilistic models, ther-
mal samples generated using modularity or other energy
functions, or multiple runs of optimization algorithms,
and our method will work with any of these. We design a
partition clustering objective function using simple infor-
mation theoretic arguments, and use an efficient Monte
Carlo scheme to optimize this objective and identify clus-
ters of similar partitions and a representative member of
each cluster. We test the method on a range of real and
synthetic networks and demonstrate that it returns sub-
stantially distinct community divisions that are a good
guide to the structures present in the original sample.

II. MATERIALS AND METHODS

The primary goal of our proposed technique is to find
representative partitions that summarize the community
structure in a network. We call these representative par-
titions modes. Suppose we have an observed network
consisting of N nodes and we have some method for
finding community divisions of these nodes, also called
partitions. We can represent a partition with a length-N
vector g that assigns to each node i =1... N a label g;
indicating which community it belongs to.

We assume that there are a large number of plausible
partitions and that our community detection method re-
turns a subset of them. Normally we expect that many
of the partitions would be similar to one another, dif-
fering only by a few nodes here or there. The goal of
this paper is to develop a procedure for gathering such
similar partitions into clusters, and generating a mode,
which is itself a partition, as an archetypal representa-
tive of each cluster. For the sake of clarity, we will in
this paper use the words “partition” or “division” to de-
scribe the assignment of network nodes to communities,
and the word “cluster” to describe the assignment of en-
tire partitions to groups according to the method that
we describe.

In order both to divide the partitions into clusters and
to find a representative mode for each cluster, we first
develop a clustering objective function based on infor-
mation theoretic arguments. The main concept behind
our approach is a thought experiment in which we imag-
ine transmitting our set of partitions to a receiver using a
multi-step encoding chosen so as to minimize the amount
of information required for the complete transmission.

A. Partition clustering as an encoding problem

Let us denote our set of partitions by D and suppose
there are S partitions in the set, labeled p = 1...5.
Now imagine we wish to transmit a complete description
of all elements of the set to a friend. How should we go
about this? The most obvious way is to send each of the
partitions separately to the receiver using some simple
encoding that uses, say, numbers or symbols to represent
community labels. We could do somewhat better by us-
ing an optimal prefix code such as a Huffman code [24]
that economizes by representing frequently used labels
with shorter code words. Even this, however, would be
quite inefficient in terms of information. We can do bet-
ter by making use of the fact that, as we have said, we
expect many of our partitions to be similar to one an-
other. This allows us to save information by dividing the
partitions into clusters of similar ones and transmitting
only a few partitions in full—one representative partition
or mode for each cluster—then describing the remaining
partitions by how they differ from these modes. The
method is illustrated in Fig.

Initially, let us assume that we want to divide the
set D of partitions into K clusters, denoted C} with
k=1...K. (We will discuss how to choose K sepa-
rately in a moment.) To efficiently transmit D, we first
transmit K representative modes, which themselves are
members of D, with group labels §*). Then for each
individual partition in D we transmit which cluster, or
equivalently which mode, it belongs to and then the par-
tition itself by describing how it differs from that mode.
Since the latter information will be smaller if a partition
is more similar to its assigned mode, choosing a set of
modes that are accurately representative of all partitions
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FIG. 1: Tlustration of the transmission of a set of partitions
for a network. We first transmit a small set of “modes,”
archetypal partitions drawn from the larger set. Then each
partition from the complete set is transmitted by describing
how it differs from the most similar of the modes.

will naturally minimize the total information, and we use
this criterion to derive the best set of modes. This is the
minimum description length principle, as applied to find-
ing the optimal clusters and modes.

Following this plan, the total description length per
sampled partition can be written in the form

«i/ptotal ZHg(k) +H( )

The first term represents the amount of information re-
quired to transmit the modes and is simply equal to the
sum of their entropies:
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Here my, is the partition label p of the kth mode, n, is

the number of communities in partition p, and a(p )
the number of nodes in partition p that have communlty
label r.

The second term in Eq. [I] represents the amount of
information needed to specify which cluster, or alterna-
tively which mode, each partition in D belongs to:
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where ¢, = |Cj| is the number of partitions (out of S

total) that belong to mode k.

The third term in [I| represents the amount of informa-
tion needed to specify each of the individual partitions
g® in terms of their modes §*)

X 1
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Hyoq is the modified conditional entropy of the group
labels of g(P) given the group labels of g(*) [25]. The

normal (non-modified) conditional entropy is
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where P is the number of nodes simultaneously classi-
fied into community 7 in partition g(™ and community
s in partition g(®). The matrix of elements ¢"*? for any
pair of partitions m,p is known as a contingency table,
and Eq. [f] measures the amount of information needed
to transmit g given that we already know both §*)
and the contingency table. To actually transmit the par-
titions in practice we would also need to transmit the
contingency table, and the second term in Eq. [ repre-
sents the information needed to do this. The quantity
Q(p,m) is equal to the number of possible contingency

tables t"P with row and column sums ag-m) and a(p )
spectively. This quantity can be computed exactly for
smaller contingency tables and there exist good approx-
imations to its value for larger tables [25].

The modified conditional entropy, including the log (2
term, thus measures the total amount of information
needed to transmit the partition g(?) after having al-
ready transmitted its mode §(*). The log Q) term is often
omitted from calculations of conditional entropy, but it
turns out to be crucial in the current application. With-
out it, one can minimize the conditional entropy simply
by making the number of groups in the modal partition
very large, with the result that the minimum descrip-
tion length solution is biased toward modes with many
groups. The additional term avoids this bias.

A detailed derivation of Eq. [I]is given in Appendix [A]
By minimizing this quantity we can now find the best set
of modes to describe a given set of partitions.

B. Choosing the number of clusters

So far we have assumed that we know the number K
of clusters of partitions, or equivalently the number of
modes. In practice we do not usually know K, and more-
over there is not normally even one “correct” value for
a given network. Different values of K can give useful
answers for the same network, depending on how much
granularity we wish to see in the community structures
returned by the method. How then are we to choose the
value of K7

One approach is to use the description length itself to
choose K. Low values of K, corresponding to only a



small number of modes, will give inefficient descriptions
of the data because many partitions will not be simi-
lar to any of the modes. Conversely, high values of K
will give inefficient partitions because we will waste a lot
of information describing all the modes. In between, at
some moderate value of K, lies the maximally efficient
choice. Thus, we might imagine we could simply look for
the minimum description length among all values of K
to find the best value. An analogous method is used,
for example, for choosing the optimal number of bins for
histograms and often works well in that context [26] [27].

For our problem, however, this approach does not usu-
ally give a useful answer because the number of modes
it returns depends on the number of partitions S in the
sample, increasing as the value of S increases. In the case
of histograms this is desirable—you want to use more
bins when you have more data—but in the case of com-
munity structure it usually is not. Normally we would
like our representation of the space of community struc-
tures to capture the fundamental features of the network
independent on how we choose to sample those features,
including how many samples we draw. Moreover, we find
that the number of modes becomes unmanageably large
for sample sizes S greater than a few thousand and the
individual modes themselves differ only very slightly in
their composition.

We would prefer a number of modes that remains con-
stant as S becomes large. A natural way to achieve this
is to impose a penalty on the description length objective
function using a multiplier or “chemical potential” that
couples linearly to the value of K thus:

N K
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This is the objective function we use in our calculations.
It is straightforward to show that (unlike the description
length by itself) this form makes the optimal number
of clusters K independent of S—see Appendix [B] for a
derivation, where we also show that the same guarantee
cannot be made for the unpenalized description length.

Equation [f] contains the free parameter \, whose value
affects the number of modes, but if we want that number
to be small (as we normally do) then we expect A to be
of order unity. In practice, we find that the choice A =1
works well and this is the value we use for all the example
applications presented here.

C. Minimizing the description length

Our goal is now to find the set of modes g that min-
imize Eq. [f] This could be done using any of a va-
riety of optimization methods, but here we make use

of a greedy algorithm that employs a sequence of ele-
mentary moves that merge and split clusters, inspired
by a similar merge-split algorithm for sampling com-
munity structures described in [28]. We start by ran-
domly dividing our set D of partitions into some num-
ber K of initial clusters, then identify the mode §*)
of each cluster C} as the partition p € Cj that mini-
mizes H(g®)) + > geC Hyoa(g'?]g®). In other words,
the initial mode for each cluster is the partition p that
is closest to all others in terms of modified conditional
entropy, accounting for the entropy of p itself.

Computing the modified conditional entropy, Eq. []
has time complexity O(N), which means it takes
O(NS?/K?) steps to compute each mode exactly if
the initial clusters are the same size. This can be
slow in practice, but we can obtain a good approxima-
tion substantially faster by Monte Carlo sampling. We
draw a random sample X of partitions from the clus-
ter (without replacement) and then minimize H(g®)) +
(eu/1X1) D gex Hyoa(g'?]g®)), where as previously ci
is the size of the cluster. Good results can be obtained
with relatively small samples. In our calculations we use
|X| = 30. The time complexity of this calculation is
O(NS/Ky), a significant improvement given that sam-
ple sizes S can run into the thousands or more. We also
store the values of H(g®) and Hyoq(g'?|g®)) as they
are computed so that they do not need to be recomputed
on subsequent steps of the algorithm.

Now that we have an initial set of clusters and rep-
resentative modes, the algorithm proceeds by repeatedly
proposing one of the following moves at random, accept-
ing it only if it reduces the total description length in

Eq. [6}

1. Pick a partition g at random and assign it to the
closest mode g*).

2. Pick two clusters Cy and Cy» at random and merge
them into a single cluster Cj, recomputing the cluster
mode as before.

3. Pick a cluster C}, at random and split it into two clus-
ters Cy and Cy» using a k-means style algorithm: we
select two modes at random from C} and assign each
partition in Cj to the closer of the two (in terms of
modified conditional entropy). Then we recompute
the modes for each resulting cluster and repeat until
convergence is reached.

These steps together constitute a complete algorithm for
minimizing the description length and optimizing the
clusters, but we find that the efficiency of the algorithm
can be further improved by adding a fourth move thus:

4. Perform step 2, then immediately perform step 3 us-
ing the merged cluster from step 2.

This extra move, inspired by a similar one in the commu-
nity merge-split algorithm of [28], helps with the rapid
optimization of partition assignments between pairs of
clusters.



We continue performing these moves until a prescribed
number of consecutive moves are rejected without im-
proving the description length, then the algorithm halts.
We find that this procedure returns very consistent re-
sults despite its random nature. It has O(N.S) time com-
plexity per move in the worst case (which occurs when
there is just a single cluster), and is fast in practice. In
particular, it is typically much faster than the community
detection procedure itself for current community detec-
tion algorithms, so it adds little to the overall time needed
to analyze a network. We give a range of example appli-
cations in the next section.

III. RESULTS

In this section we demonstrate the application of our
method to a number of example networks, both real
and computer generated. For each example we perform
community detection by fitting to the non-parametric
degree-corrected block model [29] and sampling 10000
community partitions from the posterior distribution of
the model by Markov chain Monte Carlo using the algo-
rithm of [28]. These samples are then clustered using the
method of this paper with the cluster penalty parameter
set to A = 1, the number of Monte Carlo samples for
estimating modes to | X| = 30, and the number of initial
modes to Ky = 1. We also calculate for each mode k a
weight wy = ¢ /S equal to the fraction of all partitions
in D that fall in cluster k, to assess the relative sizes of
the clusters.

A. Synthetic networks

As a first test of our method, we apply it to a set of
synthetic (i.e., computer-generated) networks specifically
constructed to display varying degrees of ambiguity in
their community structure. Figure shows results for
a network generated using the planted partition model, a
symmetric version of the stochastic block model [30] B1]
in which N nodes are assigned in equal numbers to ¢
communities, and between each pair of nodes i, j an edge
is placed with probability p;, if ¢ and j are in the same
community or poyt if ¢ and j are in different commu-
nities. In our example we generated a network with
N = 100 nodes, ¢ = 4 communities, and p;, = 0.25,
Pout = 0.02. Though it contains four communities, by its
definition, this network should exhibit only a single mode,
the structure “planted” into it in the network generation
process. There will be competing individual partitions,
but they should be distributed evenly around the single
modal structure rather than multimodally around two
or more structures. And indeed our algorithm correctly
infers this as shown in the figure: it returns a single rep-
resentative structure in which all nodes are grouped cor-
rectly into their planted communities. Given the random
nature of the community detection algorithm it would be

possible for a small number of nodes to be incorrectly as-
signed in the modal structure, simply by chance, but in
the present case this did not happen and every node is
assigned correctly.

For a second, more demanding example we construct a
network using the full (non-symmetric) stochastic block
model, which is more flexible than the planted partition
model. If g denotes a vector of community assignments
as previously, then an edge in the model is placed be-
tween each node pair 4, j independently at random with
probability wy,,., where the wg, . are parameters that we
choose. For our example we create a network with three
communities and with parameters of the form

Ps DPm Do
w= |Pm Ps Dbl, (7)
Po Db Ds

where pg is the within-group edge probability, p,, and py
are between-group probabilities, and ps > p,, > pp. In
our particular example the network has N = 99 nodes
divided evenly between the three groups and p, = 0.27,
Pm = 0.08, p, = 0.01. This gives the network a nested
structure in which there is a clear separation between
group 3 and the rest, and a weaker separation between
groups 1 and 2. This sets up a deliberate ambiguity in
the community structure: does the “correct” structure
have three groups or just two? As shown in Fig. 2B,
our method accurately pinpoints this ambiguity, finding
two representative modes for the network, one with three
separate communities and one where communities 1 and
2 are merged together.

A third synthetic example network is shown in
Fig. 2[C, the “ring of cliques” network proposed by Good
et al. [I2], in which a set of cliques (i.e., complete sub-
graphs) are joined together by single edges to create a
loop. In their studies, Good et al. found this network
to have ambiguous community structure in which the
cliques joined together in pairs rather than forming sep-
arate communities on their own. Since there are two
symmetry-equivalent ways to divide the ring into clique
pairs this also means there are two equally good divisions
of the network into communities. Good et al. performed
their community detection using modularity maximiza-
tion, but similar behavior is seen with the method used
here. Most sampled community structures show the same
division into pairs of cliques, except for a node or two
that may get randomly assigned to a different commu-
nity. Our algorithm readily picks out this structure as
shown in Fig. 2IC, finding two modes that correspond to
the two rotationally equivalent configurations. Moreover,
the two modes have approximately equal weight wy in
the sampling, indicating that the Monte Carlo algorithm
spent a roughly equal amount of time on partitions near
each mode.



FIG. 2: Representative modes and their corresponding weights for three synthetic example network, identified by minimizing
Eq. |§| with A = 1 for 10,000 community partition samples. (A) Planted partition model with 100 nodes, four communities,
and connection probabilities pin = 0.25 and powt = 0.02. (B) Network of 100 nodes generated using the stochastic block model
with a mixing matrix of the form given in Eq. m with ps = 0.27, p,, = 0.08, and p, = 0.01. (C) Ring of eight cliques of size six
nodes each, connected by single edges, based on the example in [12].



B. Real networks

Turning now to real-world networks, we show that our
method can also accurately summarize community struc-
ture found in a range of practical domains. (Further ex-
amples are given in Appendix ) The results demon-
strate not only that the method works but also that real-
world networks commonly do have multimodal commu-
nity structure that is best summarized by two or more
modes rather than by just a single consensus partition,
although our method will return a single partition when
it is justified—see Section [[ITA]

Figure shows results for one well-studied network,
the co-purchasing network of books about politics com-
piled by Krebs (unpublished, but see [32]), where two
books are connected by an edge if they were frequently
purchased by the same buyers. It has been conjec-
tured that this network contains two primary commu-
nities, corresponding to politically left- and right-leaning
books, but the network contains more subtle divisions as
well. A study by Peixoto [14] found 11 different types of
structure—what we are here calling “modes.” Many of
these modes, however, differed only slightly, by the reas-
signment of a few nodes from one community to another.
Applying our method to the network we find, by contrast,
just two modes as shown in the figure, suggesting that
our algorithm is penalizing minor variations in structure
more heavily than that of Ref. [I4]. The two modes we
find have four communities each. In the one on the left
in Fig. these appear to correspond approximately to
books that are politically liberal (red), center-left (pur-
ple), center-right (green), and conservative (yellow); in
the one on the right they are left-liberal (green), liberal
(red), center (purple), and conservative (yellow).

Figure |3B shows a different kind of example, a so-
cial network of self-reported friendships among US high
school students drawn from the National Longitudinal
Study of Adolescent to Adult Health (the “Add Health”
study) [33, B4]. The particular network we examine here
is network number 5 from the study with 157 students.
(Two nodes with degree zero were removed from the net-
work before running the analysis.) As the figure shows,
the method in this case finds three modes, each composed
of half a dozen core communities of highly connected
nodes whose boundaries shift somewhat from one mode
to another, as well as a set of centrally located nodes
(pale pink and yellow in the figure) that seem to move
between communities in different modes. The movement
of nodes from one community to another may be a sign
of different roles played by core and peripheral members
of social circles, or of students with a broad range of
friendships.

In Fig. BIC, we show a third type of network, a geo-
graphic network of census tracts in the city of Chicago
(USA). In this network the nodes represent the census
tracts and two nodes are joined by an edge if the two
corresponding tracts share a border [35]. Community de-
tection applied to this network tends to find contiguous

local neighborhoods. Our algorithm finds three modes
that differ primarily in the communities on the south-
west side of the city where the density of census tracts
is lower (though it is unclear whether this is the driving
factor in the variation of community structure).

IV. DISCUSSION

In this paper we have presented a method for summa-
rizing the complex output of community detection algo-
rithms by generating a small number of archetypal net-
work partitions that are broadly representative of high-
scoring partitions in general. The method is based on
fundamental information theoretic principles, employing
a clustering objective function equal to the description
length required to transmit a set of partitions using a
specific multi-step encoding that we describe. We have
developed an efficient algorithm to minimize this objec-
tive and we give examples of applications to both syn-
thetic and real-world networks that exhibit nontrivial
multimodal community structure.

One can envisage many potential applications of this
approach. As mentioned in Section [[ITB] the represen-
tative community partitions for a social network could
highlight distinct roles or reveal information about the
diversity of a node’s social circle. In networks for which
we have additional node metadata we could investigate
how individual attributes are associated with the repre-
sentative partitions. Multimodal community structure
may also be of interest in spatial networks, for instance
for assessing competing partitions, as in mesh segmen-
tation in engineering and computer graphics [36]. More
generally, in the same way that any measurement can
be supplemented with an error estimate, any community
structure analysis could be supplemented with an anal-
ysis of competing partitions to help understand whether
the optimal division is representative of the structure of
the network as a whole.

The techniques presented in this paper could be ex-
tended in a number of ways. Our framework is applica-
ble to any set of partitions—not just community divisions
of a network but partitions of any set of objects or data
items—so it could be applied in any situation where there
are multiple competing ways to cluster objects. All that
is needed is an appropriate measure of the information
required to encode representative objects and their corre-
sponding clusters. One potential application within net-
work science could be to the identification of representa-
tive networks within a set sampled from some generative
model, such as an exponential random graph model [37].
These extensions, however, we leave for future work.
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FIG. 3: Representative modes and their corresponding weights for three real-world example network, identified by minimizing
Eq. [f] with A = 1 for 10,000 community partition samples. (A) Network of political book co-purchases [32]. (B) High school
friendship network [33], [34]. (C) Network of adjacent census tracts in the city of Chicago [35].
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Appendix A: Derivation of the description length

In this appendix we derive the description length,
Eq. |1} used in our calculations. The description length is
equal to the amount of information needed to transmit
the complete set of sampled partitions. We break up the
transmission procedure into four separate steps:

1. We transmit S vectors a®), one for each p =1...5.
If partition p has nm, non-empty communities, then
there are ( TILV 111) ways to choose the values in the vec-

P
N

tor a® and hence (n :11) possible messages that may
P

need to be transmitted to the receiver to communicate

a®) . In binary, our encoding thus requires log ( 7]:2 111)

bits, where log denotes the logarithm base 2. (Strictly
the number of bits is equal to the smallest integer
that is greater than or equal to this number, but the
difference is negligible for large N.) The information
required for transmitting all count vectors a() is then

L1_210g< _1>

This quantity does not depend on the choice of modes
or on the partitions themselves, so we can ignore it
when we optimize the total description length of our
encoding. It is conceptually important, however, that
the a®) are transmitted first, as they are needed for
constructing efficient encodings for other quantities.

(A1)

2. Next we transmit the full set of group labels §*)
for each of the mode partitions, exploiting the fact
that we now know the label count vector a(™*)
for each mode. The number of possible sets of
group labels consistent with this vector is given by
N1/ an a™)1 and hence the number of bits re-
quired to transmit a particular set is

N!
Ly = Zlog ( nmk (ﬂu),)

3. For each partition p, we transmit the partition num-
ber my, of the mode to which it belongs. This effec-
tively specifies the clusters themselves. This can be
done efficiently by first transmitting the size ¢, = |Ck|
of each of the K clusters. There are ( [Séill) possible
choices such that 34, ¢, = S, so it takes log (52}
bits to transmit any one choice. Then, given the cy
there are S!/ Hszl ¢! possible ways to assign the par-
titions to the clusters, so the total number of bits

(A2)

required to transmit the cluster labels for all parti-
tions is

S—-1 Sl
L3 =log (K— 1) + log (HkK_l Ck!) .

4. Finally, we transmit the groups labels g(®) for each in-
dividual partition other than the modes, making use
of the fact that the modes have already been trans-
mitted. We do this in two steps:

(A3)

(a) We first transmit the contingency table ¢™*P.
Since the receiver knows a(”*) and a®), they also
know the row and column sums of t""*P because

Z mep — agp) (A4)
and
D e = a{me). (A5)

S

If there are Q(my,p) possible contingency tables
with these row and column sums, then it takes
log Q(my, p) bits to transmit the contingency table
t™+P . Closed-form expressions for Q(myg,p) exist
for smaller tables. For larger ones there are good
approximations, as described in Ref. [25].
(b) Given the contingency table, the
of partitions consistent with the table is
[T [ ")'/ [1.2,tm+?!l]  and the number
of bits needed to transmit one partition is the log
of this number.

number

The total number of bits required for transmitting the
non-mode partitions is thus

T, k)'
Ly= Z Z log H tmkm
k=1 peCy rs
pFEME
K

+) ) log Qmy, p) (A6)

k=1 peC}y

pFEMy
In practice, the exclusion of the term p = my from

the sums makes little difference and can be neglected
without significantly changing the results.

Combining everything, the total description length for
the model is

Li+ Lo+ Ls+ Ly. (A7)

Ltotal =



For our purposes it is convenient to normalize this as
description length per sample, which gives

1

ﬂotal = S

(L1 + Ly + L3 + Ly). (A8)
We can convert this quantity to more familiar language
by using Stirling’s approximation, whose leading terms
for base-2 logarithms can be written in the form

(A9)

x
logx! ~ x1 - —.
ogal = wloga — -

Dropping the term L; from Eq. as discussed previ-
ously, we then have

N
Ai/ptotal =~ g Z H(g(k)) + H(C)
k=1
N XK
+ < Z Z Hmod(g(p)|g(k))
k=1 peCl,p#my
S—1 S—-K
+ 5 log(S —1) — 5 log(S — K)
- K; ! log(K — 1), (A10)

where H(§®) is given by Eq. [2, H(c) is given by Eq.
and Hy,oq(g®[g™®) is given by Eq.

To this expression we now add an additional term +AK
to control the number of clusters K, as in Eq. [6] As
shown in Appendix [B] with this term included the opti-
mal value of K is asymptotically independent of S, so we
can safely assume that S > K as S becomes large, which
allows us to drop the last three terms in giving the
form in Eq.

up to an additive constant.

Appendix B: Number of clusters

In this appendix we demonstrate that the optimal
value of K in Eq. [f] is asymptotically constant as the
number of samples S grows. For the purposes of our ar-
gument we assume that all partitions p have the same
number of groups n, = n, that the number of nodes N
is fixed and N > n, and that the cluster sizes c¢; are
approximately equal. We do not neglect the last three
terms in Eq. [AT0] as we did previously, since our argu-
ment here is what allows us to neglect these terms in the
first place.
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In terms of S, K, and N, the leading order scaling
of each of the terms in Eq. along with the linear
penalty term +AK, is

Z(S,K) ~ K—S{Vlogn

N(S-K) -
+ ( )Hmod(K)
S
S—-1

S

+

log(S —1) (B1)

log(S — K)
K-1

log(K — 1)
+log K + \K,

where Hyoq(K) is a typical scale for Hyod(9®[§®). In
general Hyoq(K) is a decreasing function of K, since a
larger number of clusters allows partitions to be assigned
to closer modes. We ignore the log{2/N contribution
to Hpmod, as it scales like n?log N/N [25] and can be
neglected by comparison with the O(logn) contribution
from the standard conditional entropy when N > n.

For fixed S, a local minimum of Eq. with respect
to K occurs at the first value of K for which

L(S,K +1) - Z(S,K) > 0. (B2)

To demonstrate that the optimal value of K remains con-
stant as S increases, we let S — oo in Eq. and show
that we can always satisfy Eq. with a finite value of
K that is independent of S. Letting S — oo in Eq.
with K constant and substituting into Eq. [B2] gives

log(1 + 1/K) + A + N [Hupoa(K + 1) — Huoa(K)] > 0,

(B3)

where we have discarded terms of order log.S/S and
smaller. Rearranging gives

A 1
Hmod(K) - Hmod(K + 1) < N + N log(l + 1/K)
(B4)

Because Hyp,oq(K) is a decreasing function of K, this in-
equality will always be satisfied for some constant K,
since Hpod(K) — Hmod (K + 1) approaches 0 from above
and the right-hand side is bounded below by the strictly
positive constant A/N. Thus the optimal value of K in
Eq. is asymptotically constant as S grows.

Note that we cannot make the same argument for the
unnormalized description length of Eq.[A7 In that case
the inequality analogous to Eq. is

1
Hmod(K) _HInod(K+1) < Nlog(1+1/K)7 (BS)

but the right-hand side of this expression goes to zero
as K becomes large, so we cannot guarantee there is a
finite value of K that satisfies the inequality. In practice,
we find that this inequality is not satisfied in many test
networks, the optimal K growing monotonically with S.



Appendix C: Additional example applications

In Fig. [ we show two additional example applications
of our method. Figure @A shows a network of collab-
orations among researchers in the field of network sci-
ence [38], which exhibits highly multimodal community
structure. In a manner reminiscent of the artificial net-
work of cliques in Fig. [2C, this network consists of many
small, tightly connected groups of nodes, which can be
arranged in various ways to form plausible community
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divisions. As we might expect, the modes identified for
this network appear to be comprised of a few of these
possible arrangements.

In Fig. we show the modes of a network of associa-
tions among terrorists involved in the 2004 Madrid train
bombing [39]. In this case, we see that the community
structure in the upper region of the network is uncer-
tain, resulting in two substantially distinct community
divisions appearing as modes.

[38] M. E. J. Newman, Finding community structure in net-
works using the eigenvectors of matrices. Phys. Rev. E
74, 036104 (2006).

[39] B. Hayes, Connecting the dots: Can the tools of graph

theory and social-network studies unravel the next big
plot? American Scientist 94, 400-404 (2006).
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FIG. 4: Representative modes and their corresponding weights identified by minimizing Eq. [f]with A = 1 for 10, 000 community
partition samples. (A) Collaboration network among network scientists [38]. (B) Network of terrorist associations [39].
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