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This paper introduces the satisfiability problem, which lies at the heart of computation theory, from
a statistical mechanical view. The emphasis is on the average behavior of random SAT ensembles,
especially the abrupt transition in the ratio of satisfiable Boolean formulas.

1. THE SATISFIABILITY PROBLEM

Satisfiability (SAT) is the problem of determining
whether a given Boolean formula allows an assignment
of variables that makes the formula evaluate to TRUE
(satisfiable) or, conversely, whether a Boolean formula is
identically FALSE (unsatisfiable).

SAT is central to computational complexity theory
for it serves as a prototype of combinatorial optimiza-
tion problems and, more importantly, it is NP-complete.
Roughly speaking, the latter means that SAT represents
all problems that may not be decidable in polynomial
time but allow proofs (e.g. true-assignments of variables)
to be verified in polynomial time.

It is conventional to consider only Boolean formulas in
congunctive normal form (CNF). For instance,

F=CiNCyANC3---NCypy, (1)
and the clauses C; could be
Ci=(x;vz;V---), Ca=--- (2)

Here Z; is the negation of the variable x;. Both x; and
T,; are called literals.

K-SAT is the subset of SAT with each clause con-
taining exactly K literals. While K-SAT with K > 3
is NP-complete and essentially as hard as SAT, simple
polynomial-time algorithms for 1-SAT and 2-SAT are
known [1].

1.1. Random K-SAT

There are (%)QK ways to form a K-literal clause
from N variables. Let SAT gk (N, M) denote the ensem-
ble generated by including in the formula each of the
(%) 2K different clauses independently with probability
MQ_K/(%) so that the mean number of clauses in a
formula is M. When we fix the ratio « = M/N and
consider the limit N — oo, interesting phenomena re-
sembling phase transitions in statistical physics occur.
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2. PHASE TRANSITION IN RANDOM K-SAT

Intuitively, we expect that a Boolean formula is less
likely to be satisfiable as more clauses are added. From
the view of statistical physics, it is natural to suspect that
some kind of phase transition will occur in the large NV
limit. This section discusses phase transition as the jump
between an almost satisfiable random SAT ensemble and
an almost unsatisfiable one.

2.1. K=2

The K = 2 case is discussed first because it is more
tractable but not trivial. Random 2-SAT undergoes
a phase transition between a satisfiable phase and an
unsatisfiable phase at a. = 1 [3][1]. More precisely,
let Px (N,a) be the portion of satisfiable formulas in
SAT g (N,aN). Then

lim P (N,a) =

N—o00

1ifa<1;
{oiasy ®)

In addition to a mathematical proof omitted here, it is
enlightening to guess the same conclusion through an
(loose) RG analysis.

Consider eliminating a variable from the ensemble
SAT; (N, M) so that

N =N-—1. (4)

Each formula should be transformed without changing its
Boolean function. For example, if x4 is being eliminated,
then the formula

(x1 Vag) AN(Z1 VT A (T2 Vag) A(zgVZ)  (5)
should become

(1 AT2) V (T1 A 3)
= (.’El V i’l) A\ (!El V 1’3) A\ (i’g \/.’fl) A\ (ifz V ng) (6)

There are certainly infinite ways to write down another
equivalent boolean formula, but the above transforma-
tion is most straightforward and yields a new ensemble
closest to a random one. The mean number of clauses in
the transformed ensemble is

M =M — 20+ o?. (7)
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FIG. 1: The probability that a formula from the random
ensemble SATk (N, M = aN) is satisfiable. Up: K = 1,
N = 5,10,20,40,200 (from right to left); middle: K = 2,
N = 50, 100, 200, 400, 2000 (from right to left);

bottom: K = 3, N = 50,100, 200 (increasing steepness). Each
data point is obtained by averaging over 10* random formulas
using the SAT-solver core described in [2].

The possibility of eliminating clauses such as (x4 V Z4)
is not considered because their O(M/N?) contribution
is negligible in the large N limit. Pretend that the new
ensemble is indeed random and call it SATy (N', M") for
the time being. Then the new clause-to-variable ratio is

M’ -1

We can immediately identify the critical value

Qe = ]-7 (9)

which coincides with the exact value in Eq. (3).

The transformation Eq. (8) fails to predict the eigen-
value at @« = a, = 1, as indicated by Fig.2, in which
applying the transformation on N = 500 ensembles 100
times does not give the correct description of N = 400 en-
sembles. The correct scaling of the transition region in «
is Aa ~ N~1/3 (Fig.3) instead of Aa ~ N~! predicted

o

FIG. 2: P> (N, a) versus «.. Black: N = 500; red: N = 400;
blue: apply Eq. (8) 100 times on the N = 500 ensemble.

FIG. 3: P> (N,a) versus . Black: N = 500; red: N = 400;
blue: apply Eq. (8) 33 times on the N = 500 ensemble.

by Eq.(8), although the proof is involved [4]. Looking
carefully at the example Eq. (6), we can find that the
transformed clauses tend to contain similar literals when
«a > 1, and therefore the new ensemble has less informa-
tion content than the random ensemble with M given by
Eq. (7). On the other hand, if the transformation results
in mostly mergers of two clauses with opposite literals z;
and T;, the new ensemble will be close to a random one,
which is the case at the critical point o, = 1.

22, K=1

With N variables and M = aN > 0 one-literal clauses,
it is almost certain that both z; and Z; appear in the same
formula for some 7 in the N — oo limit. Thus a random
formula is almost always unsatisfiable for all « > 0.

An “RG” analysis similar to the K = 2 case is not
applicable because there is no obvious way to eliminate
a variable x; from a formula such as x; A Z;--- while
preserving its Boolean function.

2.3. K =3 or more

Similar to Eq. (3), it is conjectured that for any K > 2,
there exists a.(K) such that

lim Pg (N,a) =

1 if o < a.(K);

0 if o > a(K).



For example, numerical simulations give a.(3) =~ 4.17
(Fig. 1) [5]. While numerical and theoretical studies favor
the conjecture, a definitive proof is lacking [3].

It is difficult to find a procedure that simplifies 3-SAT
formulas like Eq. (6); otherwise it would be a polynomial-
time algorithm for an NP-complete problem, the exis-
tence of which is still a big open problem [1].

3. REMARKS

The connection between statistical physics and com-
putation is not unfamiliar, and there are other ways in
which the SAT problem can be treated physically. For

example, SAT can be formulated as spin glasses, a proto-
typical family of disordered systems. Deciding satisfiabil-
ity then corresponds to finding the ground state (anneal-
ing), and random SAT ensemble is mapped to quenched
disorder [5].

Interestingly, there is an analogy between the com-
plexity K-SAT and K-dimensional Ising model. Both
problems are readily solvable at K = 1, not quite triv-
ial at K = 2, but they present great challenges when
K = 3. In fact, it has been proven that 3-D Ising model is
NP-complete by relating 3-SAT and 3-D Ising model [6].
Nevertheless, it should be noted that 4-D Ising model be-
comes easy again due to applicability of mean-field theory
while 4-SAT is not less intractable.
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