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INTRODUCTION

Natural ecosystems are deteriorating at unprecedented 
rates, with climate change deeply altering their function-
ing and the services they provide to human societies. 
There is an urgent need to understand how ecosystems 
react to environmental changes, a task made difficult by 
the inherent complexity of communities of many inter-
acting species. Of particular importance are ecosystems 
found to respond abruptly to gradual changes in envi-
ronmental conditions (Petraitis, 2013; Rocha et al., 2015; 
Scheffer et al., 2001). Key examples of these so-called cat-
astrophic shifts are the abrupt eutrophication of shallow 
lakes (Scheffer et al., 1993; Scheffer & Jeppesen, 2007), 
the desertification of arid ecosystems (Kéfi et al., 2007; 

Schlesinger et  al.,  1990), the bleaching of coral reefs 
(Graham et al., 2015) or the degradation of tropical for-
ests into treeless landscapes (Hirota et  al.,  2011). The 
occurrence of abrupt transitions suggests that some eco-
systems can exist in multiple stable states within a range 
of environmental conditions. Small perturbations could 
then induce transitions between those states, leading to 
large shifts from species-rich communities towards de-
graded ecosystem states.

The possibility that dynamical systems can be mul-
tistable and undergo abrupt shifts is also relevant across 
a variety of research fields (Scheffer,  2020): Sharp 
shifts have been reported in the human gut microbi-
ome (Lozupone et al., 2012), in neuronal activity in the 
brain (Litt et al., 2001) or even in financial markets (May 
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Abstract
Natural systems are built from multiple interconnected units, making their 
dynamics, functioning and fragility notoriously hard to predict. A fragility 
scenario of particular relevance concerns so-called regime shifts: abrupt transitions 
from healthy to degraded ecosystem states. An explanation for these shifts is that 
they arise as transitions between alternative stable states, a process that is well-
understood in few-species models. However, how multistability upscales with 
system complexity remains a debated question. Here, we identify that four different 
multistability regimes generically emerge in models of species-rich communities 
and other archetypical complex biological systems assuming random interactions. 
Across the studied models, each regime consistently emerges under a specific 
interaction scheme and leaves a distinct set of fingerprints in terms of the number 
of observed states, their species richness and their response to perturbations. Our 
results help clarify the conditions and types of multistability that can be expected 
to occur in complex ecological communities.
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et al., 2008), all of which are characterized by a complex 
architecture of many interacting elements. Uncovering 
what mechanisms make these systems multistable is a 
key step towards predicting their fragility.

In ecology in particular, the mechanisms generating 
multistability have been thoroughly described in single- 
or few-species dynamical models that do not always cap-
ture the complexity of species-rich communities (Kéfi 
et al., 2022; Kéfi, Holmgren, et al., 2016; Solé, 2011). Our 
current understanding of tipping points, therefore, largely 
ignores the role of species diversity and the complexity of 
their network of interactions (Beisner et al., 2003; Kéfi, 
Holmgren, et al., 2016; Scheffer et al., 2001, 2012). Why, 
and how, multiple stable states can emerge in species-rich 
ecosystems remain largely open questions (Figure  1a; 
Kéfi et al., 2022).

Recent research has uncovered specific scenarios in 
which multiple fixed points do emerge in species-rich 
models (Bunin, 2017; Fried et al., 2016; Gao et al., 2016; 
Kessler & Shnerb, 2015; Lever et al., 2014). Theoretical 
studies focusing on mutualistic systems, i.e. assuming 
only positive interactions between species, have iden-
tified the emergence of system-wide bistability aris-
ing from obligate and nonlinear cooperation (Gao 
et al., 2016; Laurence et al., 2019). Another large body of 
research is unveiling a very different scenario, where het-
erogeneous competition can engender many similar com-
munity states (Bunin,  2017; Diederich & Opper,  1989; 
Fried et  al.,  2016; Kessler & Shnerb,  2015; Supporting 
Information II.F, III.A for an overview of the literature). 

Beyond theoretical advances, species-rich multistability 
has also been recently described in experimental micro-
bial communities (Amor et al., 2020; Fujita et al., 2023; 
Lopes et al., 2023).

The majority of these results, however, investigate the 
emergence of multistability in a single model or under 
a specific interaction scheme. How these isolated obser-
vations are connected, if other regimes exist and how to 
detect them empirically remains unclear: we lack a gen-
eral common framework to describe the emergence of 
multistability in complex, species-rich ecosystems. This 
framework should accommodate the above multistabil-
ity observations and propose how each could be detected 
in natural systems.

In the present work, we analyse the emergence of mul-
tistability across complex biological models. We focus on a 
mathematical model of a community in which many spe-
cies interact through cooperation and competition. We first 
analyse a limit-case scenario in which all species are in-
herently bistable, with population dynamics characterized 
by an Allee Effect that limits their growth at low density 
(Courchamp et al., 2008). We then compare the outcomes 
of these analyses with those of other models where species 
can only reach a single stable state when alone. This allows 
us to investigate if multistability in complex communities 
emerges only from bistability at the level of species, or if 
community level processes also play a role of their own 
(Figure 1a). We also extend our analysis to multiple inter-
action types and other biological models, which enable us 
to assess the generality of our findings.

F I G U R E  1   Scaling up low-dimensional bistability to the community level. (a) Our understanding of abrupt transitions in ecosystems 
mostly relies on simple models that do not take into account the role of species diversity. The stable states of such models can be visualized 
through the stability landscape: the relation between a system state variable x (horizontal axes) and a potential landscape V = − S, where S 
provides a metric of system stability (vertical axis). In few-species models, stability landscapes are often simple, with the system falling in one 
of the few possible stable states (valleys in the landscape). In higher-dimensional systems, however, stability landscapes are far from trivial: they 
can be very rugged, contain many stable states and are often impossible to quantify with a single metric V . (b) Here, we study the emergence of 
multistability in species-rich community models and across complex systems. To do so, we explore multiple models and interaction types and 
obtain, for each, a set of multistability properties such as the fraction of simulations reaching a stable state S, the number of observed stable 
states Ω, the species richness of these states D and the likelihood that they recover from perturbations R.
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Our aim is to bridge the gap between low-dimensional 
theory and empirical species-rich observations. To do 
so, we characterize different multistability regimes, 
their emergence across high-dimensional models and 
their relation to empirical patterns. Our work provides 
a simple taxonomy to classify the types of multistabil-
ity that a species-rich model can display and reveals 
that the same four multistability regimes and their sig-
natures consistently emerge across models of complex 
systems.

M ETHODS

A species-rich community of bistable species

We study a community model where each of N species is 
subject to an Allee Effect (Courchamp et al., 2008). Let 
xi be the abundance of species i, with i ∈ 1, 2, … ,N. The 
temporal dynamics of each species follows:

where all parameters are positive. Here, Aii is the maximum 
growth rate of species i when isolated, and Bii determines 
the strength of self-regulation. Mutualism is included by 
considering that the abundance of species j can increase 
the growth rate of species i, saturating at a maximum value 
Aij (Wright,  1989). Saturation follows a Holling type II 
functional response, reflecting the fact that species at high 
population abundances no longer increase their mutual 
benefits (Holland et al., 2002; Rohr et al., 2014; Supporting 
Information  II.A). The parameter � j reflects the amount 
of j-individuals necessary to achieve half of the maximum 
contribution to growth rates (Wright,  1989). Conversely, 
the matrix elements Bij > 0 determine the negative effect 
of species j on species i due to competition for space or 
resources (Chase et al., 2002).

Species-specific parameters are generated as positive 
random values from log-normal distributions (Supporting 
Information I.C). Mean values of the underlying normal 
distributions are set to ⟨di⟩ = 0.1, ⟨� i⟩ = 1.0, ⟨Aii⟩ = 0.5 
and ⟨Bii⟩ = 0.1 and � = 0.1 (Supporting Information I.C). 
The central results of this work are, however, not specific 
to these values. Parameter changes, and even different 
models (see below and Supporting Information III), only 
modify the location of each regime, but not its properties 
(Supporting Information I.C.2–3; see Adler et al., 2018; 
Fort, 2018; Spaak et al., 2021 for research on community 
model parameterization).

Building a multi-interaction network

Species interactions in the studied model are separated 
into cooperative (A) and competitive (B) matrices. In 

some interactions, such as facilitation and competition 
between plants, it may be empirically difficult to as-
sess each process individually, in which case only the 
net effect between species can be used to parameterize 
a single interaction matrix (Laska & Wootton,  1998). 
However, separating interaction types into different net-
work layers provides a powerful mathematical frame-
work to understand complex ecological systems such as 
plant-pollinator communities (Lever et al., 2014; Pilosof 
et al., 2017; Rohr et al., 2014). Indeed, it has been shown 
that incorporating the multiple interaction types that 
occur in natural communities into ecological models can 
fundamentally affect our understanding of ecosystem 
dynamics and resilience (Kéfi, Miele, et al., 2016; Mougi 
& Kondoh, 2012).

Moreover, multiple interaction types can even hap-
pen simultaneously between a single pair of species. 
For example, some species can first recruit another 
(Aij > 0), which can then later in life become a compet-
itor (Bij > 0 ), as seen in algae-mussel interactions (Kéfi, 
Miele, et  al.,  2016; Wieters,  2005). In drylands, annual 
plants can significantly improve water status locally, 
while at the same time competing with shrubs for this 
limited resource (Holzapfel & Mahall, 1999). To explore 
these diverse scenarios, we first allow species pairs to 
interact only through cooperation or competition, and 
later study the scenarios emerging when both interac-
tions can occur simultaneously. Finally, we study other 
models where interactions are restricted to a single ma-
trix A and find the same qualitative results (see below 
and Supporting Information III).

To implement this, matrices A and B are built inde-
pendently and have randomly distributed interaction 
strengths. This provides a simple method to explore a 
large space of possible interaction scenarios with min-
imal assumptions (Supporting Information I.C; Barbier 
et  al.,  2018; May,  1972). An interaction between spe-
cies i and j exists with probability p; otherwise Aij = 0 
or Bij = 0 with probability (1 − p) (Erdös-Rényi graphs, 
Supporting Information I.C.4, II.F.3). We sample a wide 
range of interaction strengths, where for example inter-
specific competition can be weaker or stronger than self-
regulation (Adler et  al.,  2018; Barabás et  al.,  2016; Hu 
et al., 2022) and where the relative strengths of cooper-
ation and competition can be tuned (Lopes et al., 2023). 
We explore the effect of varying the means (Figures 2a,b 
and 3; Aij ∈

[
0,Aii

]
, Bij ∈

[
0, 2Bii

]
), standard deviation 

(Figure  2c; � ∈ [0,2.0]) and connectivity (Supporting 
Information  II.F.3; p ∈ [0, 1]) of interactions, while 
predatory interactions are studied in Supporting 
Information II.D.

Numerical and mathematical analysis

To find stable states in the system of Equation (1), we nu-
merically solve it with a Runge–Kutta method of order 

(1)
dxi

dt
= xi

(
N∑

j=1

Aij

xj

� j + xj
− di −

N∑

j=1

Bijxj

)
,
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5(4) (Dormand & Prince, 1980). We define a system by set-
ting intraspecific and interspecific interaction strengths 
and run s = 200 simulations for Figures 2–4 and s = 10

4 
for Figure 4b. For each simulation, we generate random 
initial conditions with species abundances xi(t = 0) rang-
ing from zero to values twice the individual Allee Effect 
thresholds, so that species initially start below or above 
their survival threshold with no preferred configuration 
(Supporting Information I.C). We simulate the dynam-
ics during a fixed time of t = 10

4 timesteps (Supporting 

Information I.D.1), and store the final state of the system 
(Supporting Information I.D).

To evaluate if the final state is stable, we integrate the 
dynamics for t = 10

2 additional timesteps and check if 
all species abundances before and after the added time 
are equivalent. (Supporting Information  II.E.2, II.F.2). 
We also check if the state is stable to species invasions. 
If not, it could mean that it appears stable only be-
cause potential invaders have gone extinct (Supporting 
Information  II.F.2; Roy et  al.,  2020). To avoid this, we 

F I G U R E  2   Multiple stable states under increasing mutualism, competition and interaction heterogeneity. We explore how local 
multistability, resulting from independent bistable species, upscales under increasing mutualism (a), competition (b) and interaction 
heterogeneity (c). Each grey dot represents the final diversity (D, number of surviving species) of a simulation starting from random initial 
conditions and N = 50 species (200 random initial conditions are generated for each value of the x axis). (a) Under increasing mutualism 
and no competition (Bij = 0 ∀ i ≠ j), the 2N states of independent species bistability upscale towards an all-or-nothing bistable regime. (b) 
Competition in the absence of mutualism (Aij = 0 ∀ i ≠ j) reduces the amount of species that can survive in these local states, until we see N  
states, each with only one species surviving. (c) Under heterogeneous interactions, the system attains a region with many stable states, but all 
with similar diversity. We consider low heterogeneity (� = 0.05) for (a) and (b), and weak interactions (⟨Aij = 0.25, 

⟨
Bij

⟩
= 0.1) for (c).

F I G U R E  3   Emergence of four multistability regimes in ecological communities: Number of stable states (Ω , colour scale) observed after 
s = 200 simulations with random initial conditions, for homogeneous (a) and heterogeneous (b) interaction strengths and communities starting 
at N = 50 species. Highly-mutualistic systems show a global bistability pattern (Ω ∼ 2) emerging from single-species bistabilities. At the 
other extreme, strong competition generates mutual exclusion states as well as community extinction (Ω ∼ N + 1). In between these, single-
species bistabilities can generate a high multiplicity of local states (Ω > > N). Heterogeneous interactions (b) generate a fourth multistability 
regime characterized by many states with similar biomass and diversity. Interestingly, both local multistability and cliques emerge in regions 
involving both cooperation and competition and harbour many stable states: we might need additional information to distinguish between one 
or the other regime (Box 1). The coloured dots illustrate where each regime is located.
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      |  5 of 14LETTER

avoid extinctions by setting a minimal threshold of 
xm = 10

−10 beyond which the abundance of a species 
cannot keep decreasing (Supporting Information I.D.1).

Numerical simulations are described in further detail in 
Supporting Information I, and Python codes are available 
at https://​github.​com/​GuimA​guade/​​A-​taxon​omy-​of-​MSS-​
in-​compl​ex-​ecolo​gical​-​commu​nities. Complementary an-
alytical techniques that support our results are discussed 
in Supporting Information II.A–C, II.E–G and III.

Measuring and classifying 
multistability properties

Once a stable state is found, we compare it to each state 
that was previously found for the same system (a set of 
equations with fixed parameters) but different initial con-
ditions (Supporting Information I.D.2). For each system, 
we end up with a list of different observed states, allow-
ing us to measure its multistability fingerprints (additional 
fingerprints are explored in II.G): (1) the fraction of initial 
conditions that reach a stable state without fluctuations (S
) (Beninca et al., 2008; Hu et al., 2022); (2) the number of 
observed stable states (Ω), and (3) for each of the states in 
the list, its diversity of surviving species (D). Each system is 

thereby characterized by an Ω and an S value and as many 
D values as observed states. We generate systems with ran-
dom interaction strengths, and we plot their multistabil-
ity fingerprints in the three-dimensional space of possible 
(S,Ω,D) values (Figure 4a). Each dot is assigned a colour 
by classifying it into one of the four regimes identified 
(Supporting Information II.G.4).

We also study (4) how Ω and D scale with the 
number of species N  (Figure  4b; Supporting 
Information  II.G.1–2; Wright et  al.,  2021), and (5) 
if states recover after perturbations (Relman,  2012) 
(Supporting Information  I.E). For this, we perturb 
stable states with normally distributed abundance 
changes Δxi, and compute how often they recover 
their original species composition (R). This allows us 
to measure the basin of attraction of stable states and 
their relative stability (Menck et al., 2013) (Figure 4c; 
Supporting Information II.G.3).

Exploring the space of possible 
interaction schemes

We explore how different interaction schemes modulate 
the emergence and properties of stable states. Because 

F I G U R E  4   Identifying distinct fingerprints of the multistability regimes. Here we analyse the signatures of each multistability regime 
using simple measurable metrics. (a) We generate 300 systems with random ⟨A⟩, ⟨B⟩, � values and N = 50. For each system, we run s = 200 
simulations starting from random initial conditions (Supporting Information I). Each dot of the figure represents the final properties of a 
simulation for a given system and initial conditions (300 × 200 dots), and is plotted with high transparency so that opaque areas show where 
most dots overlap. Each dot reflects the number of surviving species D in a final state, the number of states Ω and the fraction of stable runs 
S observed. Note that D is a property that can change for each of the 200 simulations in a system, while Ω and S are aggregated properties of 
the system across initial conditions. Each multistability family seats within a well-defined cluster. Colours are chosen by measuring in which 
of the four domains of Figure 3 the random ⟨A⟩, ⟨B⟩, � fall (Supporting Information II.G.4), while coloured circles around clusters are drawn 
at hand to improve visualization. (b) Scaling of the number of observed states Ω with species number N, with N  ranging from 10 to 50. We 
generate up to s = 10

4 initial conditions to ensure that we explore a large number of possible stable states Ω. There are still many more local 
multistability states than simulations as 2N > 10

4, which explains the asymptote in the yellow line. The Ω = 2N fit is tested for smaller 
community sizes in Supporting Information II.G.1. (c) We also test stable states against random perturbations of variable magnitude (Δxi
, Supporting Information I.E) and count the fraction of times the same state is recovered as a proxy for basin stability. Our tests show a lower 
resilience bound at R ∼ Ω

−1 (dashed line): the basin stability of stable communities rapidly decays when they are surrounded by a multiplicity 
of other states. (d) Qualitatively similar fingerprints are found for different complex systems: Generalized Lotka-Volterra communities (GLV), 
gene regulatory networks (GRN), cancer-immune interactions and random neural networks (Supporting Information III). The fact that not 
all regimes emerge in all models is consistent with the proposed taxonomy (see Equivalent Multistability Regimes and Fingerprints Across 
Complex Systems section).
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interaction types are segregated into two different net-
work layers (Pilosof et al., 2017), we can investigate the 
individual effects of each interaction separately. We 
first study multistability in the absence of species in-
teractions (Aij = Bij = 0 if i ≠ j) and later explore the 
states that emerge under relatively homogeneous mutu-
alism, competition and their combination (i.e. � ≤ 0.1 ; 
Supporting Information  I.C, II.D–F). Finally, we ex-
plore the effects of increasing the heterogeneity of inter-
action strengths and network connectivity (Supporting 
Information II.F.3).

Other complex biological models

We replicate the above analysis on four archetypical 
models of complex biological systems, namely Lotka-
Volterra interactions (Bunin, 2017), the cancer-immune 
interplay (Garay & Lefever, 1978), gene regulatory net-
works (Karlebach & Shamir,  2008) and neural cluster 
interactions in the brain (Stern et al., 2014; Supporting 
Information III). The generalized Lotka-Volterra model 
is of particular interest, as it describes a similar commu-
nity as that of Equation (1) but without an Allee Effect. 
This allows us to assess if multistability at the commu-
nity scale only emerges when species themselves are bi-
stable. A detailed analysis of each model is presented in 
Supporting Information  III, while their multistability 
fingerprints are displayed in Figure 4d.

RESU LTS

For extremely weak interactions (i.e. Aij ≈ Bij ≈ 0 for 
i ≠ j), species i can be either present (x∗

i
> 0) or extinct 

(x∗
i
= 0), depending on whether the initial abundance 

xi(t = 0) falls below or above an Allee Effect threshold 
(Supporting Information II.A; Courchamp et al., 2008). 
The community can then be in any of 2N stable states, 
encompassing all possible combinations of local species 
presence and absence (Supporting Information II.A). We 
investigate below how this multistability landscape is af-
fected by different interaction types.

Global and local stable states in mutualistic 
communities

Provided that cooperation strengths are strongly ho-
mogeneous, interspecies competition is held at zero 
and species connectivity is high (Aij ≈ ⟨A⟩ ∀ i ≠ j, Bij = 0 
∀ i ≠ j, p ≈ 1; Supporting Information II.B, II.F.3), 
analytical and numerical results predict that com-
munities can become bistable, such that all species 
either coexist or go extinct simultaneously (Figure 2a 
right; Supporting Information  II.B; Gao et  al.,  2016; 
Tu et  al.,  2017). This happens in a parameter range 

where species do not survive if alone (x∗
i
= 0 if Aij ≈ 0

; Supporting Information  II.A) and cooperation is 
strong enough. The community then collectively repro-
duces the bistable dynamics of each species: no spe-
cies will survive unless cooperation is strong enough 
and the total initial abundance overcomes a predict-
able tipping point (Supporting Information II.B.1; Gao 
et  al.,  2016), above which all species survive together 
through a community level niche facilitation process 
(Figure 2a right; Koffel et al., 2021). This indicates that 
global bistability can emerge in systems where bistable 
species cooperate strongly as previously proposed in 
(Gao et al., 2016).

However, this perfect all-or-nothing regime breaks 
if some species can survive without the need for coop-
eration with others and interactions are relatively weak 
(Supporting Information  II.B.2). Here, many local 
multistability states can emerge where only some spe-
cies are present (Figure 2a left). This scenario becomes 
particularly relevant close to the tipping point of the 
globally bistable system. Here, the abrupt extinction of 
the whole community becomes blurred by many inter-
mediate states, each involving gradually fewer species 
(Supporting Information II.B.2, II.G).

Local and mutual exclusion states in competitive 
communities

In Figure  2b we maintain the above homogeneity con-
straints on parameters, interactions and connectivity, 
and gradually increase the strength of competition 

⟨
Bij

⟩
 

(Aij = 0 for i ≠ j). Under very weak competition, the com-
munity can be again in many species presence-absence 
states (Figure  2b left). As competition increases, the 
number of species that can coexist decreases as expected 
(Arnoldi et al., 2016; Levin, 1970). However, local bista-
bilities can still generate many stable states: stronger com-
petitors can be present or absent, hence excluding (or not) 
weaker species. The community can still be in many local 
states, with their multiplicity bounded by competition 
strength (Figure 2b middle; Supporting Information II.C).

Under stronger competition, we recover the well-
known scenario of mutual exclusion (Petraitis,  2013): 
there exist N states with only one surviving competitor 
each (Figure 2b box). Under the Allee Effects and even 
stronger competition, only the global extinction state pre-
vails. All competitors are pushed below their Allee Effect 
threshold and no species survive (Figure 2b bottom right; 
Supporting Information II.C.3; Wang et al., 1999).

Different multistability regimes under mixed 
interactions

Ecological communities are usually built on a varying 
mixture of positive and negative interspecies effects (Kéfi, 
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Miele, et al., 2016; Mougi & Kondoh, 2012). To account for 
this, we keep the same constraints on interaction strength 
homogeneity 𝜎 < 0.2 and network connectivity p ≈ 1, and 
explore systems with different mutualistic (⟨A⟩ ) and com-
petitive (⟨B⟩) strengths (Figure 3a). For each system, we 
simulate the dynamics s = 200 times with random initial 
conditions (Supporting Information I.D), and count the 
number of observed stable states Ω.

Global bistability arises under dominant mutual-
ism, so that the community exists in two stable states 
(Figure 3 purple). At the other extreme, strong competi-
tion generates N mutual exclusion states (Figure 3 blue), 
each with only one surviving species, and community ex-
tinction at even stronger 

⟨
Bij

⟩
 (Figure 3 top left). Under 

mixed interactions, the two domains are separated by 
a highly multistable region that can be related to local 
multistability (Figure 3 yellow, Box 1). These states arise 
when the effects of mutualism and competition are bal-
anced out, making each species locally bistable and al-
lowing for a large number of species presence-absence 
combinations (Supporting Information II.E.1).

Emerging cliques under heterogeneous 
interactions

The previous results are valid when interaction 
strengths and connectivity are relatively uniform across 

BOX 1  Distinguishing multistability regimes in empirical data—A simulated case study

Of the four multistability regimes, global bistability and mutual exclusion represent limit-case scenarios: dom-
inant nonlinear cooperation generates an all-or-none regime (i.e. ‘global bistability’), while extreme competi-
tion drives a one-survives signature (i.e. ‘mutual exclusion’; Figure 4a). These rare fingerprints are unlikely to 
be found in any but experimentally engineered ecosystems. Instead, local multistability and clique regimes 
correspond to more nuanced scenarios. They are both characterized by a high multiplicity of stable states 
and emerge at intermediate mixtures of cooperation and competition (Figure 3). In many empirical scenar-
ios, however, we might not be able to observe and characterize many replicas of a system and their proper-
ties (Schröder et al., 2005). Instead, we might only have temporal data for community composition (Gajer 
et al., 2012) or responses after a manipulation (Friman et al., 2015; Mehner et al., 2002). This means that the 
number of states (Figure 4b) or the interaction matrices (Figure 3) might not be accessible metrics to indicate 
what regime is at play, while diversity alone might not allow us to tell cliques and local states apart.

Here, we showcase a simulated experimental scenario in which we have time series data of species richness in 
an ecosystem. The system shows evidence of multistability in the form of community shifts after species extinc-
tions (see e.g. Schröder et al., 2005 for a detailed analysis on multistability identification), and we want to know 
what multistability regime explains such shifts. Suppose that we have minimal knowledge of our system. We 
cannot infer ⟨A⟩, ⟨B⟩ nor �, and only know that there might be cooperative and competitive interactions at play 
and that we cannot assume either of them to dominate. We also do not have information of the size of the spe-
cies pool N and cannot follow the trajectories of all species, but just count their diversity or the abundance of 
one or two tracked species before and after a manipulation. One manipulation that can performed in certain 
systems is the local extinction of a given species (Supporting Information I.E). Albeit not always feasible and 
often requiring ethical assessment, selective extinctions can be done in spatially enclosed systems such as in lake 
experiments (Mehner et al., 2002) or in the lab, for example for given antibiotic sensitivities in microbial commu-
nities (Friman et al., 2015). For illustrative purposes, suppose that we can follow and perturb two different spe-
cies while measuring the changes in diversity of the community before and after each manipulation (Figure 5).

Even in this minimal case study, our taxonomy can shed light on identifying the multistability regime at play. 
In local multistability, the extinction of a species happens if it goes below its Allee Effect threshold, show-
ing that we do not even need to fully eradicate the species to drive it to extinction (Figure 5a; Supporting 
Information  II.A). Furthermore, weak interactions indicate that no other species should react to the per-
turbation that the first extinction generates, and we would not observe secondary extinctions or invasions 
(Figure 5a purple). The shift in diversity should therefore be limited to ΔD = − 1 Instead, species survival in 
cliques is strongly intertwined: extinction of a species can alter the populations of others, driving secondary 
extinctions and invasions and potentially leading to a new community (Figure 5b). Therefore, ΔD can take val-
ues different from − 1 (Supporting Information II.G.2). In the simulated experiment, even after we know that 
a tracked species has gone extinct and diversity should decrease by one, our measurement of ΔD = 0 indicates 
that a new species has invaded (Figure 5b). Additional information of other species abundances would in fact 
show that a whole new community is in place, but the response of diversity alone can already indicate which 
multistability regime is behind observations.
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8 of 14  |      MULTISTABILITY IN ECOLOGICAL COMMUNITIES

species (Supporting Information I). Ecological commu-
nities, however, often exhibit heterogeneous interactions 
(Bascompte, 2007; De Ruiter et al., 1995). As we increase 
the standard deviation of interaction strengths, our 
model captures the emergence of another multistability 
domain, which takes over a large proportion of the phase 
space (Figure 3b).

This regime is characterized by a high number of 
states, falling between the N  states of mutual exclusion 
and the 2N of local multistability (Figure 3; Supporting 
Information  II.G.1). Beyond the number of states Ω
, cliques can be differentiated from other regimes 
because they have consistently low species diversity 
(Figure 2c; Supporting Information  II.F, III), show a 
characteristic reaction to perturbations (Box  1) and 
regularly exhibit persistent abundance fluctuations 
(Supporting Information  II.F.2). As discussed in the 
following section, assessing these different metrics 
provides a unique fingerprint that allows us to dis-
tinguish cliques from the three other multistability 
regimes. The same clique fingerprint emerges under 
purely linear but heterogeneous interaction strengths 
(Supporting Information III; Bunin, 2017) or homoge-
neous strengths but non-uniform network connectivity 

(0 < p < 1; Supporting Information  II.F.3), meaning 
that it does not depend on species being locally bistable. 
It is in this context of low network connectivity that 
the term cliques was first used to describe alternative 
subgroups of coexisting species (Fried et  al.,  2016; 
Supporting Information II.F).

Abundance fluctuations and stable states coex-
ist in the clique regime. A large fraction of cliques 
achieves a stable fixed point when community size N 
is moderate as in experimental or controlled environ-
ments (N = 10

1
∼ 10

2; Supporting Information  II.F.2; 
Chase,  2003; Hu et  al.,  2022), whereas many cliques 
become unstable and fluctuate in very large systems 
(see Discussion; Supporting Information  II.F.2; Ros 
et al., 2022). Furthermore, the heterogeneity threshold 
at which cliques emerge is not sharp for N = 50, and 
different regimes and fluctuations can coexist close 
to this boundary (Figure  3b) (Bunin,  2017; Mallmin 
et al., 2023; May, 1972; Supporting Information II.F.1, 
III).

In the Supporting Information, we explore four other 
biological models, namely Lotka-Volterra communi-
ties, gene regulatory networks, cancer-immune interac-
tions and neural networks. We find that the same four 

F I G U R E  5   Distinguishing between multistability regimes. Here we show two minimal simulated case studies of multistability experiments 
as described in Box 1. We start with a community of N = 50 species that achieves a stable state, and we perturb it by extinguishing two species 
(red and purple) at two different time steps (green dashed lines). Knowledge on species trajectories (left panels) and community compositions 
(simplified network diagrams) or A and B values would allow us to accurately assess the multistability fingerprints in place. In realistic settings, 
however, we might only have access to much simpler data, such as community diversity (green circles, right panels) or the abundance of another 
species before and after a perturbation (red and purple lines) and A and B are tipically unknown. The ΔD = − 1 signature indicates only 
the tracked species has gone extinct with no other species reacting to it (local multistability, a). Any other ΔD signature would indicate that 
additional extinctions or invasions have happened. Because cliques often have different species compositions but the same diversity, the ΔD = 0 
signature tells us that, after the tracked species has gone extinct, others have invaded replacing the original community (b) The two systems 
have ⟨A⟩ = 0.25 and ⟨B⟩ = 0.08, but � = 0.06 (a) and � = 0.6 (b).
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      |  9 of 14LETTER

multistability regimes emerge consistently across all these 
models, again depending on the sign and heterogeneity 
of the interactions at play (Supporting Information III).

Fingerprints of each multistability regime

Four different multistability regimes emerge in the 
species-rich community model of Equation (1). Each is 
driven by specific interactions and can encompass a dif-
ferent number of stable states (Figures 2 and 3). However, 
the number of states alone is not enough to characterize a 
given regime (Figure 3, Box 1). This raises the questions: 
What makes the community states in these regimes re-
ally different? and: Can our framework help us identify 
each regime in experimental data?

As mentioned above for cliques, key state properties 
are interrelated differently for each multistability regime 
(Figure 4). Across the studied models, global bistability 
scenarios have an expectedly simple signature (Figure 4a 
purple): they are characterized by two stable states in-
volving all or no surviving species, a pattern that remains 
stable across system sizes (Ω(N) = 2 and D(N) = 0 or N , 
Figure 4b; Supporting Information II.G). Moreover, the 
D = N state is very resilient to perturbations, as coop-
eration between many species drastically reduces the 
basin of attraction of x = 0 and global extinction is only 
observed when all species start at very low abundance 
(Figure 4c; Supporting Information II.B.2).

In contrast, local multistability (Figure  4a yellow) 
comprises many possible stable states, some of which 
might take very long to stabilize, resulting in appar-
ent fluctuations (Supporting Information  II.E.2). The 
multiplicity of states explodes when increasing species 
number (Ω(N) ∼ 2N), a signature that would only be ob-
servable in simulations or laboratory experiments with 
many replicas (N = 20 species generate up to Ω ≈ 10

6 
states, explaining the yellow asymptote in Figure  4b) 
The Ω(N) ∼ 2N trend can be observed for smaller N 
(Supporting Information  II.G.1). An easier-to-spot fin-
gerprint is that diversity D can take any value between 
0 and N (Supporting Information  II.G.2). Local states 
are also particularly prone to small shifts after pertur-
bations, as any invasion or extinction follows from a 
species abundance crossing its Allee Effect boundary 
(Figure 4c; Supporting Information II.A; Box 1).

Competition drives the other two regimes at play. 
Under strong and homogeneous competition, states 
are characterized by the mutual exclusion fingerprint, 
involving Ω(N) ∼ N states, each with a single survivor 
(D(N) ∼ 1; Figure  4a,b blue). Also typical of transitive 
competition, these states rarely fluctuate (Soliveres & 
Allan, 2018).

Cliques of a few coexisting species emerge as compe-
tition becomes heterogeneous (Figure  4 green). Across 
the studied models we found that the number of stable 
cliques is larger than system size (Ω(N) ∼ N�, 1 < 𝜃 < 2; 

Supporting Information II.F.2, II.G.1), meaning that sys-
tems with N = 50 can exhibit hundreds of different stable 
states (Figure  4b). Although there are specific settings 
for which the number of cliques can even be exponen-
tial in N (Altieri et al., 2021; Diederich & Opper, 1989; 
Supporting Information II.F), current agreement for 
models with uncorrelated Aij values indicates that only 
a much smaller number of cliques is stable and uninva-
dable (Mallmin et al., 2023; Ros et al., 2022), in agree-
ment with our results (Figure  4b green; Supporting 
Information II.F.2 and II.G.1). While the large number 
of cliques can be beyond experimental measurement, 
another key property is their constrained diversity: 
shifts between cliques imply some species turnover, but 
rarely a drastic change in species richness (Supporting 
Information II.G.2; Box 1). As recently observed in mi-
crobial communities (Hu et al., 2022), cliques also show 
a high tendency to exhibit chaotic fluctuations (S < 1; 
Figure 4a; Supporting Information II.F.2).

The resilience of states to random perturbations R 
correlates inversely with their multiplicity Ω, with a pre-
dictable lower resilience bound at R ∼ Ω

−1 (Figure  4c; 
Supporting Information  II.G.3). This puts forward a 
relevant hypothesis in random complex systems: the fra-
gility of states increases drastically and predictably with 
their number, as their agglomeration reduces their basin 
stability. Finally, each regime shows a distinct response 
to single-species extinctions, providing a useful signa-
ture in experimental settings (Box 1).

DISCUSSION

Four different multistability regimes emerge in a high-
dimensional community model of interacting species 
under an Allee Effect. Each of these regimes emerges 
under a clearly identifiable interaction scheme and is 
characterized by a distinct measurable signature. The 
same regimes and signatures emerge in four other bio-
logical models. Interestingly, two of the regimes –mu-
tual exclusion and cliques– emerge in systems that do 
not have species-level bistability. This shows that com-
plex multistability can emerge without imposing specific 
low-dimensional constraints. In this section, we discuss 
(1) the links between the observed regimes and previous 
theoretical work, (2) the relation between their finger-
prints and empirical observations in ecology and (3) the 
emergence of equivalent regimes across models of com-
plex systems.

Relation with theoretical results

The results of our study contribute to a growing body of re-
search studying multistability in species-rich communities 
(Bunin, 2017; Gao et al., 2016; Huisman & Weissing, 2001; 
Karatayev et  al.,  2023; Kessler & Shnerb,  2015; Lever 
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10 of 14  |      MULTISTABILITY IN ECOLOGICAL COMMUNITIES

et al., 2014), where some of the regimes described above 
have been observed in isolation. Research on species-rich 
communities interacting only through cooperation iden-
tified the emergence of an all-or-nothing regime (Gao 
et  al.,  2016; Lever et  al.,  2014). Subsequent studies have 
discussed how bistability is dismantled when competi-
tive dynamics and heterogeneity are in place (Supporting 
Information  II.C.1; Arnoldi et  al.,  2016; Tu et  al.,  2017) 
as well as the role of network structure in allowing the 
all-or-nothing response (Karatayev et  al.,  2023; Lever 
et al., 2014; Lorenzana et al., 2023).

Another body of work has described the emergence 
of a complex set of multiple fixed points in species-
rich communities under heterogeneous interactions 
without the need to impose species-level bistability 
(Bunin,  2017; Diederich & Opper,  1989; Supporting 
Information  II.F, III.A). The emergence of multista-
bility under heterogeneous interactions can be ex-
plained within the context of intransitive competition 
(Huisman & Weissing,  2001; May & Leonard,  1975; 
Soliveres & Allan,  2018): non-uniform competition 
strengths imply that species can beat some competitors 
and lose to some others, so that a single system can 
encode different groups of coexisting species (Gallien 
et al.,  2017). The number and stability of these states 
depend on the assumptions of each ecological model 
(Biroli et al., 2018; Fried et al., 2016; Ros et al., 2022; 
Supporting Information  II.F.2). Random asymmetric 
interactions (Aij ≠ Aji) between a very large number 
of species (N → ∞) generate mostly unstable states, 
associated to chaotic f luctuations in the presence of 
noise or species migration (Mallmin et  al.,  2023; Ros 
et  al.,  2022; Roy et  al.,  2020). This can explain the 
community variability or the unpredictable dynamics 
of some systems (Beninca et al., 2008; Hu et al., 2022; 
Huisman & Weissing,  2001; Mallmin et  al.,  2023; 
Supporting Information  II.F.2). Alternatively, and in 
line with our findings, other ecological models have 
identified that stable cliques, i.e. small subsets of few 
coexisting species, can emerge if the system size is fi-
nite (Kessler & Shnerb, 2015; Mallmin et al., 2023) or 
the competition matrix is sparse (Bunin,  2021; Fried 
et al., 2016; Supporting Information II.F, III.A).

In light of previous studies, the novelty of our work is 
not only the description of emergent multistability, but 
rather how four different scenarios previously described 
in isolation can emerge in a single model and consistently 
display the same quantifiable signatures across models.

Linking the four multistability regimes to 
ecological evidence

The local multistability regime implies many combi-
nations of present and absent species. Because spe-
cies dynamics are weakly intertwined, environmental 
changes should rarely result in abrupt shifts involving 

many species losses, but rather gradual changes in the 
composition of communities (Figure  2a; Supporting 
Information  II.G.2; Box  1). This scenario is related to 
the notion of ecosystems as loose collections of species 
(Gleason,  1926; Liautaud et  al.,  2019; Box  1), consist-
ent with observations of gradual species replacements 
under environmental changes, as identified in forest 
(Lieberman et al., 1996; Whittaker, 1967) or benthic eco-
systems (Smale,  2008). As interactions get harsher, the 
presence of a competitor can prevent the survival of oth-
ers, reducing the multiplicity of stable states (Figure 2b) 
as recently observed in microbial communities (Lopes 
et  al.,  2023). A related spatial observation is that of 
checkerboard abundance distributions, where spe-
cies tend to have negative associations with each other 
(Diamond,  1975). These patterns suggest that multiple 
stable states are influenced by the dominance of differ-
ent competitors (Connor et al., 2013; Dallas et al., 2019).

A better-understood regime concerns the limit case 
of mutual exclusion under strong competition. Because 
they are easy to engineer via single-resource competition, 
multiple states with only one surviving competitor have 
been observed in detail in simpler systems (Aerts, 1999; 
Leslie et  al.,  1968), and more recently in species-rich 
communities (Amor et al., 2020; Lopes et al., 2023; Song 
et al., 2021).

Heterogeneous competition leads to the emer-
gence of a regime with many small cliques of coex-
isting species. These states are characterized by a 
similar number of species (Figures 2c and 4; Supporting 
Information II.G), meaning that shifts between cliques 
imply a moderate species turnover, but no major 
change in diversity (Supporting Information  II.G.2; 
Box  1). Cliques can be linked to two related empiri-
cal scenarios. First, opposed to ecosystems as loose 
collections of species is the notion of communities as 
superorganisms (Clements, 1936; Liautaud et al., 2019). 
Evidence of sharp shifts in community composition 
indicates that only specific subsets of species might 
be allowed to coexist (Hemp,  2006; Kitayama,  1992). 
Second, cliques can also be linked to ecological suc-
cession and related priority effects. In local multistabil-
ity, the presence of one species does not alter whether 
a second one can invade or survive (Figure  5a). In 
cliques instead, historical contingencies in the order 
of species arrivals do affect which of many states is 
reached (Bunin,  2021; Drake,  1991; May,  1977; Price 
& Morin, 2004; Box 1, Figure 5b). Yet, it remains un-
clear if succession dynamics are purely unpredictable 
(Huisman & Weissing,  2001) or else if there exists an 
order explaining which cliques will be preferentially 
reached by community assembly (Bunin, 2021; Box 1). 
Clique states are also linked to the emergence of cha-
otic f luctuations, a signature of intransitive competi-
tion in nature (Beninca et al., 2008; Hu et al., 2022).

Finally, the global bistability regime could be linked 
to catastrophic shifts: large and abrupt transitions 
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between two markedly different states (Scheffer 
et al., 2001). Such a signature, however, only emerges 
in the studied models under very specific nonlinear 
and positive interactions. This is not in agreement with 
empirical evidence for communities undergoing cata-
strophic shifts in nature (Hirota et  al.,  2011; Scheffer 
et al., 1993; Schröder et al., 2005; Zaoli & Grilli, 2021), 
where interaction types are likely to be mixed and 
heterogeneous. The rarity of large transitions in the 
studied models is consistent with recent observations 
indicating that abrupt shifts are not the norm in eco-
systems (Hillebrand et  al.,  2020), but rather emerge 
under specific conditions that are yet to be elucidated. 
Nonetheless, this leaves us with a puzzling discrep-
ancy between models and observations, since we still 
don't know the general conditions by which large 
transitions between alternative community states can 
emerge. Since our study relies on random networks, 
we hypothesize that a missing ingredient is related to 
the non-random structure of real ecological networks 
(Bascompte et  al.,  2003; De Ruiter et  al.,  1995; Kéfi, 
Miele, et al., 2016; Lever et al., 2014; Rohr et al., 2014). 
More generally, a future research avenue is to explore 
how network structure affects the four regimes identi-
fied. In particular, our intuition is that, among the dif-
ferent regimes, the effect of non-random interactions 
should be especially interesting on clique states, since 
cliques do not require low-dimensional bistability or 
a dominant interaction type to emerge. Future studies 
should seek to understand if structured matrices can 
allow for species-rich and species-poor cliques, and 
hence large transitions between them. Testing this hy-
pothesis would fill a fundamental gap in our under-
standing of catastrophic shifts in complex ecosystems.

Equivalent multistability regimes and 
fingerprints across complex systems

We find that the four multistability regimes described 
here also emerge in four other high-dimensional mod-
els: Generalized Lotka-Volterra (GLV) interactions 
(Bunin,  2017), the cancer-immune interplay (Garay & 
Lefever,  1978), gene regulatory networks (Karlebach 
& Shamir,  2008) and neural cluster interactions in the 
brain (Stern et  al.,  2014) (see Methods; Supporting 
Information III). In these models, our results highlight 
the same simple and generic taxonomy: Global and local 
states emerge in cooperative or weakly interacting sys-
tems with bistable units, while mutual exclusion states 
and cliques emerge in the presence of dominant com-
petitive interactions without the need for local bistabil-
ity. This explains why the GLV model does not harbour 
global bistability (no bistable units, x = 0 is not a stable 
attractor) while the neural interactions model does not 
harbour mutual exclusion states, as extinction due to inhi-
bition is not defined in the model (Figure 4d; Supporting 

Information III). Furthermore, the fingerprints of each 
regime are equivalent across models (Figure 4d). These 
results highlight a key property of high-dimensional 
multistability: bistability at the unit level can upscale 
to generate global or local multistabilities, but cliques 
and mutual exclusion can emerge even if the units of 
the system are monostable and interactions are linear 
(Figure 4d) (Bunin, 2017; Supporting Information II.F, 
III.A). This further emphasizes our need to move beyond 
the current low-dimensional description of alternative 
stable states when studying complex systems (Figure 1a).

CONCLUSION

Understanding how multiple stable states emerge in 
complex systems is relevant to many fields of research. 
In ecology in particular, it might play a pivotal role in 
our capacity to predict and address abrupt shifts in 
ecosystems (Kéfi et al., 2022). Our work highlights that 
the current low-dimensional understanding of alterna-
tive stable states does not easily scale up when analysing 
species-rich communities with multiple interaction types 
and random structures (Kéfi et al., 2022).

By analysing archetypical models of complex eco-
logical communities and other biological systems, we 
identified the emergence of four different multistability 
regimes. Of these, two arise in cooperative or weakly in-
teracting scenarios if species are locally bistable, while 
the other two manifests under predominantly competi-
tive dynamics even if interactions are linear and species 
are not bistable. Furthermore, each regime leaves a dis-
tinct quantifiable fingerprint, providing a tool to further 
test their occurrence in empirical datasets.

We propose that each multistability regime can be 
related to well-established observations in ecology. 
Interestingly, across the studied models, a catastrophic 
shift signature only emerges under overwhelmingly pos-
itive interactions, which does not coincide with natural 
evidence of abrupt transitions. This allows us to hypoth-
esize that non-random network structures are essential 
ingredients of community scale catastrophic shifts in 
ecosystems.

Our taxonomy suggests a constrained number of 
multistability signatures expected to generically emerge 
in high-dimensional biological models. These results 
contribute to building a unified framework to under-
stand the nature and conditions by which multistability 
emerges in complex systems.
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