Received: 23 October 2023

Revised: 11 March 2024

'.') Check for updates

Accepted: 13 March 2024

DOI: 10.1111/ele.14413

LETTER

ECOLOGY LETTERS [crRVNAE

A taxonomy of multiple stable states in complex ecological

communities

Guim Aguadé-Gorgori()1
Sonia Keéfi'*

'ISEM, Univ Montpellier, CNRS, IRD,
Montpellier, France

*Centre for Biodiversity Theory and
Modelling, Theoretical and Experimental
Ecology Station, CNRS and Paul Sabatier
University, Moulis, France

3PHIM Plant Health Institute, University
of Montpellier, CIRAD, INRAE, Institut
Agro, IRD, Montpellier, France

“France Santa Fe Institute, Santa Fe, New
Mexico, USA

Correspondence

Guim Aguadé-Gorgorid, Institut des
Sciences de I'Evolution de Montpellier
(ISEM), Université de Montpellier,
Campus Triolet, Batiment 22, cc065, 34095
Montpellier Cedex 05, France.

Email: guimaguade@gmail.com
Funding information

Fundacion Ramon Areces; French
National Research Agency ANR, Grant/
Award Number: ANR-18-CE02-0010-01

Editor: Po-Ju Ke

INTRODUCTION

| Jean-Francois Arnoldi’ | Matthieu Barbier’

Abstract

Natural systems are built from multiple interconnected units, making their
dynamics, functioning and fragility notoriously hard to predict. A fragility
scenario of particular relevance concerns so-called regime shifts: abrupt transitions
from healthy to degraded ecosystem states. An explanation for these shifts is that
they arise as transitions between alternative stable states, a process that is well-
understood in few-species models. However, how multistability upscales with
system complexity remains a debated question. Here, we identify that four different
multistability regimes generically emerge in models of species-rich communities
and other archetypical complex biological systems assuming random interactions.
Across the studied models, each regime consistently emerges under a specific
interaction scheme and leaves a distinct set of fingerprints in terms of the number
of observed states, their species richness and their response to perturbations. Our
results help clarify the conditions and types of multistability that can be expected
to occur in complex ecological communities.
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Schlesinger et al., 1990), the bleaching of coral reefs
(Graham et al., 2015) or the degradation of tropical for-

Natural ecosystems are deteriorating at unprecedented
rates, with climate change deeply altering their function-
ing and the services they provide to human societies.
There is an urgent need to understand how ecosystems
react to environmental changes, a task made difficult by
the inherent complexity of communities of many inter-
acting species. Of particular importance are ecosystems
found to respond abruptly to gradual changes in envi-
ronmental conditions (Petraitis, 2013; Rocha et al., 2015;
Scheffer et al., 2001). Key examples of these so-called cat-
astrophic shifts are the abrupt eutrophication of shallow
lakes (Scheffer et al., 1993; Scheffer & Jeppesen, 2007),
the desertification of arid ecosystems (Kéfi et al., 2007,

ests into treeless landscapes (Hirota et al., 2011). The
occurrence of abrupt transitions suggests that some eco-
systems can exist in multiple stable states within a range
of environmental conditions. Small perturbations could
then induce transitions between those states, leading to
large shifts from species-rich communities towards de-
graded ecosystem states.

The possibility that dynamical systems can be mul-
tistable and undergo abrupt shifts is also relevant across
a variety of research fields (Scheffer, 2020): Sharp
shifts have been reported in the human gut microbi-
ome (Lozupone et al., 2012), in neuronal activity in the
brain (Litt et al., 2001) or even in financial markets (May
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MULTISTABILITY IN ECOLOGICAL COMMUNITIES

et al., 2008), all of which are characterized by a complex
architecture of many interacting elements. Uncovering
what mechanisms make these systems multistable is a
key step towards predicting their fragility.

In ecology in particular, the mechanisms generating
multistability have been thoroughly described in single-
or few-species dynamical models that do not always cap-
ture the complexity of species-rich communities (Kéfi
et al., 2022; Kéfi, Holmgren, et al., 2016; Solé, 2011). Our
current understanding of tipping points, therefore, largely
ignores the role of species diversity and the complexity of
their network of interactions (Beisner et al., 2003; Kéfi,
Holmgren, et al., 2016; Scheffer et al., 2001, 2012). Why,
and how, multiple stable states can emerge in species-rich
ecosystems remain largely open questions (Figure la;
Kéfiet al., 2022).

Recent research has uncovered specific scenarios in
which multiple fixed points do emerge in species-rich
models (Bunin, 2017; Fried et al., 2016; Gao et al., 2016;
Kessler & Shnerb, 2015; Lever et al., 2014). Theoretical
studies focusing on mutualistic systems, i.e. assuming
only positive interactions between species, have iden-
tified the emergence of system-wide bistability aris-
ing from obligate and nonlinear cooperation (Gao
et al., 2016; Laurence et al., 2019). Another large body of
research is unveiling a very different scenario, where het-
erogeneous competition can engender many similar com-
munity states (Bunin, 2017; Diederich & Opper, 1989;
Fried et al., 2016; Kessler & Shnerb, 2015; Supporting
Information ILF, III.A for an overview of the literature).
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Beyond theoretical advances, species-rich multistability
has also been recently described in experimental micro-
bial communities (Amor et al., 2020; Fujita et al., 2023;
Lopes et al., 2023).

The majority of these results, however, investigate the
emergence of multistability in a single model or under
a specific interaction scheme. How these isolated obser-
vations are connected, if other regimes exist and how to
detect them empirically remains unclear: we lack a gen-
eral common framework to describe the emergence of
multistability in complex, species-rich ecosystems. This
framework should accommodate the above multistabil-
ity observations and propose how each could be detected
in natural systems.

In the present work, we analyse the emergence of mul-
tistability across complex biological models. We focus on a
mathematical model of a community in which many spe-
cies interact through cooperation and competition. We first
analyse a limit-case scenario in which all species are in-
herently bistable, with population dynamics characterized
by an Allee Effect that limits their growth at low density
(Courchamp et al., 2008). We then compare the outcomes
of these analyses with those of other models where species
can only reach a single stable state when alone. This allows
us to investigate if multistability in complex communities
emerges only from bistability at the level of species, or if
community level processes also play a role of their own
(Figure la). We also extend our analysis to multiple inter-
action types and other biological models, which enable us
to assess the generality of our findings.

Simulating dynamics for a species-rich model
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Scaling up low-dimensional bistability to the community level. (a) Our understanding of abrupt transitions in ecosystems

mostly relies on simple models that do not take into account the role of species diversity. The stable states of such models can be visualized
through the stability landscape: the relation between a system state variable x (horizontal axes) and a potential landscape V' = — S, where S
provides a metric of system stability (vertical axis). In few-species models, stability landscapes are often simple, with the system falling in one
of the few possible stable states (valleys in the landscape). In higher-dimensional systems, however, stability landscapes are far from trivial: they
can be very rugged, contain many stable states and are often impossible to quantify with a single metric V. (b) Here, we study the emergence of
multistability in species-rich community models and across complex systems. To do so, we explore multiple models and interaction types and
obtain, for each, a set of multistability properties such as the fraction of simulations reaching a stable state S, the number of observed stable
states Q, the species richness of these states D and the likelihood that they recover from perturbations R.
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Ouraimisto bridge the gap between low-dimensional
theory and empirical species-rich observations. To do
so, we characterize different multistability regimes,
their emergence across high-dimensional models and
their relation to empirical patterns. Our work provides
a simple taxonomy to classify the types of multistabil-
ity that a species-rich model can display and reveals
that the same four multistability regimes and their sig-
natures consistently emerge across models of complex
systems.

METHODS
A species-rich community of bistable species

We study a community model where each of N species is
subject to an Allee Effect (Courchamp et al., 2008). Let
x; be the abundance of species i, withi € 1,2, ... , N. The
temporal dynamics of each species follows:

dx, N x; ., N
=N ZAijm— i_ZBiixj SNV
j=1 J 7 j=1

where all parameters are positive. Here, 4;;is the maximum
growth rate of species i when isolated, and B;; determines
the strength of self-regulation. Mutualism is included by
considering that the abundance of species j can increase
the growth rate of species 7, saturating at a maximum value
A, (Wright, 1989). Saturation follows a Holling type II
functional response, reflecting the fact that species at high
population abundances no longer increase their mutual
benefits (Holland et al., 2002; Rohr et al., 2014; Supporting
Information II.A). The parameter y; reflects the amount
of j-individuals necessary to achieve half of the maximum
contribution to growth rates (Wright, 1989). Conversely,
the matrix elements B;; > 0 determine the negative effect
of species j on species i due to competition for space or
resources (Chase et al., 2002).

Species-specific parameters are generated as positive
randomvaluesfromlog-normaldistributions (Supporting
Information I.C). Mean values of the underlying normal
distributions are set to (d;) =0.1, (y,) =1.0, (4;)=0.5
and (B;) = 0.1 and 6 = 0.1 (Supporting Information I.C).
The central results of this work are, however, not specific
to these values. Parameter changes, and even different
models (see below and Supporting Information I1T), only
modify the location of each regime, but not its properties
(Supporting Information 1.C.2-3; see Adler et al., 2018;
Fort, 2018; Spaak et al., 2021 for research on community
model parameterization).

Building a multi-interaction network

Species interactions in the studied model are separated
into cooperative (4) and competitive (B) matrices. In

some interactions, such as facilitation and competition
between plants, it may be empirically difficult to as-
sess each process individually, in which case only the
net effect between species can be used to parameterize
a single interaction matrix (Laska & Wootton, 1998).
However, separating interaction types into different net-
work layers provides a powerful mathematical frame-
work to understand complex ecological systems such as
plant-pollinator communities (Lever et al., 2014; Pilosof
et al., 2017; Rohr et al., 2014). Indeed, it has been shown
that incorporating the multiple interaction types that
occur in natural communities into ecological models can
fundamentally affect our understanding of ecosystem
dynamics and resilience (Kéfi, Miele, et al., 2016; Mougi
& Kondoh, 2012).

Moreover, multiple interaction types can even hap-
pen simultaneously between a single pair of species.
For example, some species can first recruit another
(A4;; > 0), which can then later in life become a compet-
itor (B; > 0), as seen in algae-mussel interactions (Kefi,
Miele, et al., 2016; Wieters, 2005). In drylands, annual
plants can significantly improve water status locally,
while at the same time competing with shrubs for this
limited resource (Holzapfel & Mahall, 1999). To explore
these diverse scenarios, we first allow species pairs to
interact only through cooperation or competition, and
later study the scenarios emerging when both interac-
tions can occur simultaneously. Finally, we study other
models where interactions are restricted to a single ma-
trix 4 and find the same qualitative results (see below
and Supporting Information IIT).

To implement this, matrices 4 and B are built inde-
pendently and have randomly distributed interaction
strengths. This provides a simple method to explore a
large space of possible interaction scenarios with min-
imal assumptions (Supporting Information I.C; Barbier
et al., 2018; May, 1972). An interaction between spe-
cies i and j exists with probability p; otherwise 4; =0
or B; =0 with probability (1 — p) (Erdés-Reényi graphs,
Supporting Information 1.C.4, I1.LF.3). We sample a wide
range of interaction strengths, where for example inter-
specific competition can be weaker or stronger than self-
regulation (Adler et al., 2018; Barabas et al., 2016; Hu
et al., 2022) and where the relative strengths of cooper-
ation and competition can be tuned (Lopes et al., 2023).
We explore the effect of varying the means (Figures 2a,b
and 3; A; € [O,Aﬁ], B; e [0, 2B,-l-]), standard deviation
(Figure 2c; o €[0,2.0]) and connectivity (Supporting
Information IIL.LF.3; pe&€[0,1]) of interactions, while
predatory interactions are studied in Supporting
Information I1.D.

Numerical and mathematical analysis

To find stable states in the system of Equation (1), we nu-
merically solve it with a Runge—Kutta method of order
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FIGURE 2 Multiple stable states under increasing mutualism, competition and interaction heterogeneity. We explore how local
multistability, resulting from independent bistable species, upscales under increasing mutualism (a), competition (b) and interaction
heterogeneity (c). Each grey dot represents the final diversity (D, number of surviving species) of a simulation starting from random initial
conditions and N = 50 species (200 random initial conditions are generated for each value of the x axis). (a) Under increasing mutualism
and no competition (B =0Vi#)), the 2N states of independent species bistability upscale towards an all-or-nothing bistable regime. (b)
Competition in the absence of mutualism (A = 0 Vi # ) reduces the amount of species that can survive in these local states, until we see N
states, each with only one species surviving. (c) Under heterogeneous interactions, the system attains a region with many stable states, but all
with similar diversity. We consider low heterogeneity (¢ = 0.05) for (a) and (b), and weak interactions ({ A;= =0.25, <B,]> 0.1) for (c).
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FIGURE 3 Emergence of four multistability regimes in ecological communities: Number of stable states (€2, colour scale) observed after

s = 200 simulations with random initial conditions, for homogeneous (a) and heterogeneous (b) interaction strengths and communities starting
at N = 50 species. Highly-mutualistic systems show a global bistability pattern (€ ~ 2) emerging from single-species bistabilities. At the
other extreme, strong competition generates mutual exclusion states as well as community extinction (2 ~ N + 1). In between these, single-
species bistabilities can generate a high multiplicity of local states (€ > > V). Heterogeneous interactions (b) generate a fourth multistability
regime characterized by many states with similar biomass and diversity. Interestingly, both local multistability and cliques emerge in regions
involving both cooperation and competition and harbour many stable states: we might need additional information to distinguish between one
or the other regime (Box 1). The coloured dots illustrate where each regime is located.

5@) (Dormand & Prince, 1980). We define a system by set-
ting intraspecific and interspecific interaction strengths
and run s = 200 simulations for Figures 2-4 and s = 10*
for Figure 4b. For each simulation, we generate random
initial conditions with species abundances x;(¢ = 0) rang-
ing from zero to values twice the individual Allee Effect
thresholds, so that species initially start below or above
their survival threshold with no preferred configuration
(Supporting Information I.C). We simulate the dynam-
ics during a fixed time of r = 10* timesteps (Supporting

Information I.D.1), and store the final state of the system
(Supporting Information 1.D).

To evaluate if the final state is stable, we integrate the
dynamics for ¢ = 10% additional timesteps and check if
all species abundances before and after the added time
are equivalent. (Supporting Information ILE.2, TI1.F.2).
We also check if the state is stable to species invasions.
If not, it could mean that it appears stable only be-
cause potential invaders have gone extinct (Supporting
Information IL.LF.2; Roy et al., 2020). To avoid this, we
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FIGURE 4 Identifying distinct fingerprints of the multistability regimes. Here we analyse the signatures of each multistability regime
using simple measurable metrics. (a) We generate 300 systems with random (A ), ( B), o values and N = 50. For each system, we run s = 200
simulations starting from random initial conditions (Supporting Information I). Each dot of the figure represents the final properties of a
simulation for a given system and initial conditions (300 %200 dots), and is plotted with high transparency so that opaque areas show where
most dots overlap. Each dot reflects the number of surviving species D in a final state, the number of states £ and the fraction of stable runs
S observed. Note that D is a property that can change for each of the 200 simulations in a system, while Q and .S are aggregated properties of
the system across initial conditions. Each multistability family seats within a well-defined cluster. Colours are chosen by measuring in which
of the four domains of Figure 3 the random {4 ), ( B), o fall (Supporting Information 11.G.4), while coloured circles around clusters are drawn
at hand to improve visualization. (b) Scaling of the number of observed states  with species number N, with N ranging from 10 to 50. We
generate up to s = 10" initial conditions to ensure that we explore a large number of possible stable states . There are still many more local
multistability states than simulations as 2V > 104, which explains the asymptote in the yellow line. The Q = 2N fit is tested for smaller
community sizes in Supporting Information I1.G.1. (c) We also test stable states against random perturbations of variable magnitude (Axi

, Supporting Information I.LE) and count the fraction of times the same state is recovered as a proxy for basin stability. Our tests show a lower
resilience bound at R ~ Q7" (dashed line): the basin stability of stable communities rapidly decays when they are surrounded by a multiplicity
of other states. (d) Qualitatively similar fingerprints are found for different complex systems: Generalized Lotka-Volterra communities (GLV),

gene regulatory networks (GRN), cancer-immune interactions and random neural networks (Supporting Information III). The fact that not
all regimes emerge in all models is consistent with the proposed taxonomy (see Equivalent Multistability Regimes and Fingerprints Across

Complex Systems section).

avoid extinctions by setting a minimal threshold of
X, = 1071° beyond which the abundance of a species
cannot keep decreasing (Supporting Information I.D.I).

Numerical simulations are described in further detail in
Supporting Information I, and Python codes are available
at https://github.com/GuimAguade/A-taxonomy-of-MSS-
in-complex-ecological-communities. Complementary an-
alytical techniques that support our results are discussed
in Supporting Information II.A-C, IL.LE-G and III.

Measuring and classifying
multistability properties

Once a stable state is found, we compare it to each state
that was previously found for the same system (a set of
equations with fixed parameters) but different initial con-
ditions (Supporting Information 1.D.2). For each system,
we end up with a list of different observed states, allow-
ing us to measure its multistability fingerprints (additional
fingerprints are explored in I1.G): (1) the fraction of initial
conditions that reach a stable state without fluctuations (S
) (Beninca et al., 2008; Hu et al., 2022); (2) the number of
observed stable states (Q2), and (3) for each of the states in
the list, its diversity of surviving species (D). Each system is

thereby characterized by an Q and an S value and as many
D values as observed states. We generate systems with ran-
dom interaction strengths, and we plot their multistabil-
ity fingerprints in the three-dimensional space of possible
(S, Q, D) values (Figure 4a). Each dot is assigned a colour
by classifying it into one of the four regimes identified
(Supporting Information I11.G.4).

We also study (4) how Q and D scale with the
number of species N (Figure 4b; Supporting
Information I1.G.1-2; Wright et al., 2021), and (5)
if states recover after perturbations (Relman, 2012)
(Supporting Information I.E). For this, we perturb
stable states with normally distributed abundance
changes Ax;,, and compute how often they recover
their original species composition (R). This allows us
to measure the basin of attraction of stable states and
their relative stability (Menck et al., 2013) (Figure 4c;
Supporting Information I1.G.3).

Exploring the space of possible
interaction schemes

We explore how different interaction schemes modulate
the emergence and properties of stable states. Because
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interaction types are segregated into two different net-
work layers (Pilosof et al., 2017), we can investigate the
individual effects of each interaction separately. We
first study multistability in the absence of species in-
teractions (4; = B;=0 if i#/) and later explore the
states that emerge under relatively homogeneous mutu-
alism, competition and their combination (i.e. 6 <0.1;
Supporting Information 1.C, Il.D-F). Finally, we ex-
plore the effects of increasing the heterogeneity of inter-
action strengths and network connectivity (Supporting
Information IL.F.3).

Other complex biological models

We replicate the above analysis on four archetypical
models of complex biological systems, namely Lotka-
Volterra interactions (Bunin, 2017), the cancer-immune
interplay (Garay & Lefever, 1978), gene regulatory net-
works (Karlebach & Shamir, 2008) and neural cluster
interactions in the brain (Stern et al., 2014; Supporting
Information III). The generalized Lotka-Volterra model
is of particular interest, as it describes a similar commu-
nity as that of Equation (1) but without an Allee Effect.
This allows us to assess if multistability at the commu-
nity scale only emerges when species themselves are bi-
stable. A detailed analysis of each model is presented in
Supporting Information III, while their multistability
fingerprints are displayed in Figure 4d.

RESULTS

For extremely weak interactions (ie. A;~ B;~0 for
i #J), species i can be either present (x7 > 0) or extinct
(x* =0), depending on whether the initial abundance
x,;(t =0) falls below or above an Allee Effect threshold
(Supporting Information II.A; Courchamp et al., 2008).
The community can then be in any of 2V stable states,
encompassing all possible combinations of local species
presence and absence (Supporting Information I1.A). We
investigate below how this multistability landscape is af-
fected by different interaction types.

Global and local stable states in mutualistic
communities

Provided that cooperation strengths are strongly ho-
mogeneous, interspecies competition is held at zero
and species connectivity is high (4, ~ (4) Vi #j, B; =0
Vi#j, p~1; Supporting Information II.B, IL.F.3),
analytical and numerical results predict that com-
munities can become bistable, such that all species
either coexist or go extinct simultaneously (Figure 2a
right; Supporting Information I1.B; Gao et al., 2016;
Tu et al., 2017). This happens in a parameter range

where species do not survive if alone (x; =0if 4;~0
; Supporting Information II.A) and cooperation is
strong enough. The community then collectively repro-
duces the bistable dynamics of each species: no spe-
cies will survive unless cooperation is strong enough
and the total initial abundance overcomes a predict-
able tipping point (Supporting Information I1.B.1; Gao
et al., 2016), above which all species survive together
through a community level niche facilitation process
(Figure 2a right; Koffel et al., 2021). This indicates that
global bistability can emerge in systems where bistable
species cooperate strongly as previously proposed in
(Gao et al., 2016).

However, this perfect all-or-nothing regime breaks
if some species can survive without the need for coop-
eration with others and interactions are relatively weak
(Supporting Information II.B.2). Here, many /local
multistability states can emerge where only some spe-
cies are present (Figure 2a left). This scenario becomes
particularly relevant close to the tipping point of the
globally bistable system. Here, the abrupt extinction of
the whole community becomes blurred by many inter-
mediate states, each involving gradually fewer species
(Supporting Information I1.B.2, I1.G).

Local and mutual exclusion states in competitive
communities

In Figure 2b we maintain the above homogeneity con-
straints on parameters, interactions and connectivity,
and gradually increase the strength of competition <Bl]>
(4, =0fori#j). Under very weak competition, the com-
munity can be again in many species presence-absence
states (Figure 2b left). As competition increases, the
number of species that can coexist decreases as expected
(Arnoldi et al., 2016; Levin, 1970). However, local bista-
bilities can still generate many stable states: stronger com-
petitors can be present or absent, hence excluding (or not)
weaker species. The community can still be in many local
states, with their multiplicity bounded by competition
strength (Figure 2b middle; Supporting Information I1.C).
Under stronger competition, we recover the well-
known scenario of mutual exclusion (Petraitis, 2013):
there exist NV states with only one surviving competitor
each (Figure 2b box). Under the Allee Effects and even
stronger competition, only the global extinction state pre-
vails. All competitors are pushed below their Allee Effect
threshold and no species survive (Figure 2b bottom right;
Supporting Information I1.C.3; Wang et al., 1999).

Different multistability regimes under mixed
interactions

Ecological communities are usually built on a varying
mixture of positive and negative interspecies effects (Kéfi,
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BOX 1 Distinguishing multistability regimes in empirical data—A simulated case study

Of the four multistability regimes, global bistability and mutual exclusion represent limit-case scenarios: dom-
inant nonlinear cooperation generates an al/l-or-none regime (i.e. ‘global bistability’), while extreme competi-
tion drives a one-survives signature (i.e. ‘mutual exclusion’; Figure 4a). These rare fingerprints are unlikely to
be found in any but experimentally engineered ecosystems. Instead, local multistability and clique regimes
correspond to more nuanced scenarios. They are both characterized by a high multiplicity of stable states
and emerge at intermediate mixtures of cooperation and competition (Figure 3). In many empirical scenar-
i0s, however, we might not be able to observe and characterize many replicas of a system and their proper-
ties (Schroder et al., 2005). Instead, we might only have temporal data for community composition (Gajer
et al., 2012) or responses after a manipulation (Friman et al., 2015; Mehner et al., 2002). This means that the
number of states (Figure 4b) or the interaction matrices (Figure 3) might not be accessible metrics to indicate
what regime is at play, while diversity alone might not allow us to tell cliques and local states apart.

Here, we showcase a simulated experimental scenario in which we have time series data of species richness in
an ecosystem. The system shows evidence of multistability in the form of community shifts after species extinc-
tions (see e.g. Schroder et al., 2005 for a detailed analysis on multistability identification), and we want to know
what multistability regime explains such shifts. Suppose that we have minimal knowledge of our system. We
cannot infer (4), (B) nor ¢, and only know that there might be cooperative and competitive interactions at play
and that we cannot assume either of them to dominate. We also do not have information of the size of the spe-
cies pool N and cannot follow the trajectories of all species, but just count their diversity or the abundance of
one or two tracked species before and after a manipulation. One manipulation that can performed in certain
systems is the local extinction of a given species (Supporting Information I.E). Albeit not always feasible and
often requiring ethical assessment, selective extinctions can be done in spatially enclosed systems such as in lake
experiments (Mehner et al., 2002) or in the lab, for example for given antibiotic sensitivities in microbial commu-
nities (Friman et al., 2015). For illustrative purposes, suppose that we can follow and perturb two different spe-
cies while measuring the changes in diversity of the community before and after each manipulation (Figure 5).

Even in this minimal case study, our taxonomy can shed light on identifying the multistability regime at play.
In local multistability, the extinction of a species happens if it goes below its Allee Effect threshold, show-
ing that we do not even need to fully eradicate the species to drive it to extinction (Figure 5a; Supporting
Information II.A). Furthermore, weak interactions indicate that no other species should react to the per-
turbation that the first extinction generates, and we would not observe secondary extinctions or invasions
(Figure 5a purple). The shift in diversity should therefore be limited to AD = — 1 Instead, species survival in
cliques is strongly intertwined: extinction of a species can alter the populations of others, driving secondary
extinctions and invasions and potentially leading to a new community (Figure 5b). Therefore, AD can take val-
ues different from — 1 (Supporting Information I11.G.2). In the simulated experiment, even after we know that
a tracked species has gone extinct and diversity should decrease by one, our measurement of AD = 0 indicates
that a new species has invaded (Figure 5b). Additional information of other species abundances would in fact
show that a whole new community is in place, but the response of diversity alone can already indicate which
multistability regime is behind observations.

Miele, et al., 2016; Mougi & Kondoh, 2012). To account for
this, we keep the same constraints on interaction strength
homogeneity ¢ < 0.2 and network connectivity p =~ 1, and
explore systems with different mutualistic ((A4)) and com-
petitive ((B)) strengths (Figure 3a). For each system, we
simulate the dynamics s = 200 times with random initial
conditions (Supporting Information 1.D), and count the
number of observed stable states Q.

Global bistability arises under dominant mutual-
ism, so that the community exists in two stable states
(Figure 3 purple). At the other extreme, strong competi-
tion generates N mutual exclusion states (Figure 3 blue),
each with only one surviving species, and community ex-
tinction at even stronger <sz> (Figure 3 top left). Under

mixed interactions, the two domains are separated by
a highly multistable region that can be related to local
multistability (Figure 3 yellow, Box 1). These states arise
when the effects of mutualism and competition are bal-
anced out, making each species locally bistable and al-
lowing for a large number of species presence-absence
combinations (Supporting Information IL.E.I).

Emerging cliques under heterogeneous
interactions

The previous results are valid when interaction
strengths and connectivity are relatively uniform across
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FIGURE 5 Distinguishing between multistability regimes. Here we show two minimal simulated case studies of multistability experiments
as described in Box 1. We start with a community of N = 50 species that achieves a stable state, and we perturb it by extinguishing two species
(red and purple) at two different time steps (green dashed lines). Knowledge on species trajectories (left panels) and community compositions
(simplified network diagrams) or 4 and B values would allow us to accurately assess the multistability fingerprints in place. In realistic settings,

however, we might only have access to much simpler data, such as com

munity diversity (green circles, right panels) or the abundance of another

species before and after a perturbation (red and purple lines) and 4 and B are tipically unknown. The AD = — 1signature indicates only

the tracked species has gone extinct with no other species reacting to it (local multistability, a). Any other AD signature would indicate that
additional extinctions or invasions have happened. Because cliques often have different species compositions but the same diversity, the AD =0
signature tells us that, after the tracked species has gone extinct, others have invaded replacing the original community (b) The two systems

have (4) = 0.25 and (B) = 0.08, but ¢ = 0.06 (a) and 6 = 0.6 (b).

species (Supporting Information I). Ecological commu-
nities, however, often exhibit heterogeneous interactions
(Bascompte, 2007; De Ruiter et al., 1995). As we increase
the standard deviation of interaction strengths, our
model captures the emergence of another multistability
domain, which takes over a large proportion of the phase
space (Figure 3b).

This regime is characterized by a high number of
states, falling between the N states of mutual exclusion
and the 2V of local multistability (Figure 3; Supporting
Information II.G.1). Beyond the number of states Q
, cliques can be differentiated from other regimes
because they have consistently low species diversity
(Figure 2c; Supporting Information ILF, IIT), show a
characteristic reaction to perturbations (Box 1) and
regularly exhibit persistent abundance fluctuations
(Supporting Information II.F.2). As discussed in the
following section, assessing these different metrics
provides a unique fingerprint that allows us to dis-
tinguish cliques from the three other multistability
regimes. The same clique fingerprint emerges under
purely linear but heterogeneous interaction strengths
(Supporting Information IIT; Bunin, 2017) or homoge-
neous strengths but non-uniform network connectivity

(0<p<1; Supporting Information II.F.3), meaning
that it does not depend on species being locally bistable.
It is in this context of low network connectivity that
the term cligues was first used to describe alternative
subgroups of coexisting species (Fried et al., 2016;
Supporting Information IL.F).

Abundance fluctuations and stable states coex-
ist in the clique regime. A large fraction of cliques
achieves a stable fixed point when community size N
is moderate as in experimental or controlled environ-
ments (N = 10! ~ 10% Supporting Information IL.F.2;
Chase, 2003; Hu et al., 2022), whereas many cliques
become unstable and fluctuate in very large systems
(see Discussion; Supporting Information II.F.2; Ros
et al., 2022). Furthermore, the heterogeneity threshold
at which cliques emerge is not sharp for N =50, and
different regimes and fluctuations can coexist close
to this boundary (Figure 3b) (Bunin, 2017; Mallmin
et al., 2023; May, 1972; Supporting Information II.F.1,
I11).

In the Supporting Information, we explore four other
biological models, namely Lotka-Volterra communi-
ties, gene regulatory networks, cancer-immune interac-
tions and neural networks. We find that the same four

858017 SUOWIWOD 8AIEaID 3(edl|dde a3 Aq peusenob ake sapiiie YO ‘8Sn Josa|n. 1oy Afeid T 8ul|UO A8|IAA L0 (SUONIPUO-PUB-SWBIALI0D" AB|IM"A eI pU1|UO//ScY) SUOIIPUOD PUe SULB | 8L 88S *[S5202/20/2T] Uo ARIqITauliUO AB]IM ‘ZulT IISIBAIUN Jo[ded Sauleyor AQ ETYYT@/TTTT'OT/I0PALOY 8| IM AfeIqIjeuljuo//Sdny Woly pepeojumod ‘v ‘¥202 ‘8vZ0T9rT



LETTER

| 9 of 14

multistability regimes emerge consistently across all these
models, again depending on the sign and heterogeneity
of the interactions at play (Supporting Information IIT).

Fingerprints of each multistability regime

Four different multistability regimes emerge in the
species-rich community model of Equation (1). Each is
driven by specific interactions and can encompass a dif-
ferent number of stable states (Figures 2 and 3). However,
the number of states alone is not enough to characterize a
given regime (Figure 3, Box 1). This raises the questions:
What makes the community states in these regimes re-
ally different? and: Can our framework help us identify
each regime in experimental data?

As mentioned above for cliques, key state properties
are interrelated differently for each multistability regime
(Figure 4). Across the studied models, global bistability
scenarios have an expectedly simple signature (Figure 4a
purple): they are characterized by two stable states in-
volving all or no surviving species, a pattern that remains
stable across system sizes (Q(N) =2 and D(N)=0or N,
Figure 4b; Supporting Information I1.G). Moreover, the
D = N state is very resilient to perturbations, as coop-
eration between many species drastically reduces the
basin of attraction of x = 0 and global extinction is only
observed when all species start at very low abundance
(Figure 4c; Supporting Information I1.B.2).

In contrast, local multistability (Figure 4a yellow)
comprises many possible stable states, some of which
might take very long to stabilize, resulting in appar-
ent fluctuations (Supporting Information II.LE.2). The
multiplicity of states explodes when increasing species
number (Q(N) ~ 2V), a signature that would only be ob-
servable in simulations or laboratory experiments with
many replicas (N =20 species generate up to Q= 10°
states, explaining the yellow asymptote in Figure 4b)
The Q(N) ~ 2V trend can be observed for smaller N
(Supporting Information I1.G.1). An easier-to-spot fin-
gerprint is that diversity D can take any value between
0 and N (Supporting Information I1.G.2). Local states
are also particularly prone to small shifts after pertur-
bations, as any invasion or extinction follows from a
species abundance crossing its Allee Effect boundary
(Figure 4c; Supporting Information I1.A; Box 1).

Competition drives the other two regimes at play.
Under strong and homogeneous competition, states
are characterized by the mutual exclusion fingerprint,
involving Q(N) ~ N states, each with a single survivor
(D(N) ~ 1; Figure 4a.,b blue). Also typical of transitive
competition, these states rarely fluctuate (Soliveres &
Allan, 2018).

Cliques of a few coexisting species emerge as compe-
tition becomes heterogeneous (Figure 4 green). Across
the studied models we found that the number of stable
cliques is larger than system size (Q(N) ~ N% 1 <60 <2;

Supporting Information IL.F.2, I1.G.1), meaning that sys-
tems with N = 50 can exhibit hundreds of different stable
states (Figure 4b). Although there are specific settings
for which the number of cliques can even be exponen-
tial in NV (Altieri et al., 2021; Diederich & Opper, 1989;
Supporting Information IL.F), current agreement for
models with uncorrelated 4; values indicates that only
a much smaller number of cliques is stable and uninva-
dable (Mallmin et al., 2023; Ros et al., 2022), in agree-
ment with our results (Figure 4b green; Supporting
Information IL.F.2 and II.G.1). While the large number
of cliques can be beyond experimental measurement,
another key property is their constrained diversity:
shifts between cliques imply some species turnover, but
rarely a drastic change in species richness (Supporting
Information I1.G.2; Box 1). As recently observed in mi-
crobial communities (Hu et al., 2022), cliques also show
a high tendency to exhibit chaotic fluctuations (S < ;
Figure 4a; Supporting Information I1.F.2).

The resilience of states to random perturbations R
correlates inversely with their multiplicity Q, with a pre-
dictable lower resilience bound at R ~ Q! (Figure 4c;
Supporting Information I1.G.3). This puts forward a
relevant hypothesis in random complex systems: the fra-
gility of states increases drastically and predictably with
their number, as their agglomeration reduces their basin
stability. Finally, each regime shows a distinct response
to single-species extinctions, providing a useful signa-
ture in experimental settings (Box 1).

DISCUSSION

Four different multistability regimes emerge in a high-
dimensional community model of interacting species
under an Allee Effect. Each of these regimes emerges
under a clearly identifiable interaction scheme and is
characterized by a distinct measurable signature. The
same regimes and signatures emerge in four other bio-
logical models. Interestingly, two of the regimes —mu-
tual exclusion and cliques— emerge in systems that do
not have species-level bistability. This shows that com-
plex multistability can emerge without imposing specific
low-dimensional constraints. In this section, we discuss
(1) the links between the observed regimes and previous
theoretical work, (2) the relation between their finger-
prints and empirical observations in ecology and (3) the
emergence of equivalent regimes across models of com-
plex systems.

Relation with theoretical results

Theresults of our study contribute to a growing body of re-
search studying multistability in species-rich communities
(Bunin, 2017; Gao et al., 2016; Huisman & Weissing, 2001;
Karatayev et al., 2023; Kessler & Shnerb, 2015; Lever
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et al., 2014), where some of the regimes described above
have been observed in isolation. Research on species-rich
communities interacting only through cooperation iden-
tified the emergence of an all-or-nothing regime (Gao
et al., 2016; Lever et al., 2014). Subsequent studies have
discussed how bistability is dismantled when competi-
tive dynamics and heterogeneity are in place (Supporting
Information II.C.1; Arnoldi et al., 2016; Tu et al., 2017)
as well as the role of network structure in allowing the
all-or-nothing response (Karatayev et al., 2023; Lever
et al., 2014; Lorenzana et al., 2023).

Another body of work has described the emergence
of a complex set of multiple fixed points in species-
rich communities under heterogeneous interactions
without the need to impose species-level bistability
(Bunin, 2017; Diederich & Opper, 1989; Supporting
Information IL.F, II1.A). The emergence of multista-
bility under heterogeneous interactions can be ex-
plained within the context of intransitive competition
(Huisman & Weissing, 2001; May & Leonard, 1975;
Soliveres & Allan, 2018): non-uniform competition
strengths imply that species can beat some competitors
and lose to some others, so that a single system can
encode different groups of coexisting species (Gallien
et al., 2017). The number and stability of these states
depend on the assumptions of each ecological model
(Biroli et al., 2018; Fried et al., 2016; Ros et al., 2022;
Supporting Information II.F.2). Random asymmetric
interactions (A4; # A4;) between a very large number
of species (N — oo0) generate mostly unstable states,
associated to chaotic fluctuations in the presence of
noise or species migration (Mallmin et al., 2023; Ros
et al., 2022; Roy et al., 2020). This can explain the
community variability or the unpredictable dynamics
of some systems (Beninca et al., 2008; Hu et al., 2022;
Huisman & Weissing, 2001; Mallmin et al.,, 2023;
Supporting Information II.F.2). Alternatively, and in
line with our findings, other ecological models have
identified that stable cliques, i.e. small subsets of few
coexisting species, can emerge if the system size is fi-
nite (Kessler & Shnerb, 2015; Mallmin et al., 2023) or
the competition matrix is sparse (Bunin, 2021; Fried
et al., 2016; Supporting Information IL.F, ITI.A).

In light of previous studies, the novelty of our work is
not only the description of emergent multistability, but
rather how four different scenarios previously described
in isolation can emerge in a single model and consistently
display the same quantifiable signatures across models.

Linking the four multistability regimes to
ecological evidence

The local multistability regime implies many combi-
nations of present and absent species. Because spe-
cies dynamics are weakly intertwined, environmental
changes should rarely result in abrupt shifts involving

many species losses, but rather gradual changes in the
composition of communities (Figure 2a; Supporting
Information II.G.2; Box 1). This scenario is related to
the notion of ecosystems as loose collections of species
(Gleason, 1926; Liautaud et al., 2019; Box 1), consist-
ent with observations of gradual species replacements
under environmental changes, as identified in forest
(Lieberman et al., 1996; Whittaker, 1967) or benthic eco-
systems (Smale, 2008). As interactions get harsher, the
presence of a competitor can prevent the survival of oth-
ers, reducing the multiplicity of stable states (Figure 2b)
as recently observed in microbial communities (Lopes
et al., 2023). A related spatial observation is that of
checkerboard abundance distributions, where spe-
cies tend to have negative associations with each other
(Diamond, 1975). These patterns suggest that multiple
stable states are influenced by the dominance of differ-
ent competitors (Connor et al., 2013; Dallas et al., 2019).

A better-understood regime concerns the limit case
of mutual exclusion under strong competition. Because
they are easy to engineer via single-resource competition,
multiple states with only one surviving competitor have
been observed in detail in simpler systems (Aerts, 1999;
Leslie et al., 1968), and more recently in species-rich
communities (Amor et al., 2020; Lopes et al., 2023; Song
et al., 2021).

Heterogeneous competition leads to the emer-
gence of a regime with many small cliques of coex-
isting species. These states are characterized by a
similar number of species (Figures 2c and 4; Supporting
Information I1.G), meaning that shifts between cliques
imply a moderate species turnover, but no major
change in diversity (Supporting Information 11.G.2;
Box 1). Cliques can be linked to two related empiri-
cal scenarios. First, opposed to ecosystems as loose
collections of species is the notion of communities as
superorganisms (Clements, 1936; Liautaud et al., 2019).
Evidence of sharp shifts in community composition
indicates that only specific subsets of species might
be allowed to coexist (Hemp, 2006; Kitayama, 1992).
Second, cliques can also be linked to ecological suc-
cession and related priority effects. In local multistabil-
ity, the presence of one species does not alter whether
a second one can invade or survive (Figure 5a). In
cliques instead, historical contingencies in the order
of species arrivals do affect which of many states is
reached (Bunin, 2021; Drake, 1991; May, 1977; Price
& Morin, 2004; Box 1, Figure 5b). Yet, it remains un-
clear if succession dynamics are purely unpredictable
(Huisman & Weissing, 2001) or else if there exists an
order explaining which cliques will be preferentially
reached by community assembly (Bunin, 2021; Box I).
Clique states are also linked to the emergence of cha-
otic fluctuations, a signature of intransitive competi-
tion in nature (Beninca et al., 2008; Hu et al., 2022).

Finally, the global bistability regime could be linked
to catastrophic shifts: large and abrupt transitions
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between two markedly different states (Scheffer
et al., 2001). Such a signature, however, only emerges
in the studied models under very specific nonlinear
and positive interactions. This is not in agreement with
empirical evidence for communities undergoing cata-
strophic shifts in nature (Hirota et al., 2011; Scheffer
et al., 1993; Schroder et al., 2005; Zaoli & Grilli, 2021),
where interaction types are likely to be mixed and
heterogeneous. The rarity of large transitions in the
studied models is consistent with recent observations
indicating that abrupt shifts are not the norm in eco-
systems (Hillebrand et al., 2020), but rather emerge
under specific conditions that are yet to be elucidated.
Nonetheless, this leaves us with a puzzling discrep-
ancy between models and observations, since we still
don't know the general conditions by which large
transitions between alternative community states can
emerge. Since our study relies on random networks,
we hypothesize that a missing ingredient is related to
the non-random structure of real ecological networks
(Bascompte et al., 2003; De Ruiter et al., 1995; Kéfi,
Miele, et al., 2016; Lever et al., 2014; Rohr et al., 2014).
More generally, a future research avenue is to explore
how network structure affects the four regimes identi-
fied. In particular, our intuition is that, among the dif-
ferent regimes, the effect of non-random interactions
should be especially interesting on clique states, since
cliques do not require low-dimensional bistability or
a dominant interaction type to emerge. Future studies
should seek to understand if structured matrices can
allow for species-rich and species-poor cliques, and
hence large transitions between them. Testing this hy-
pothesis would fill a fundamental gap in our under-
standing of catastrophic shifts in complex ecosystems.

Equivalent multistability regimes and
fingerprints across complex systems

We find that the four multistability regimes described
here also emerge in four other high-dimensional mod-
els: Generalized Lotka-Volterra (GLV) interactions
(Bunin, 2017), the cancer-immune interplay (Garay &
Lefever, 1978), gene regulatory networks (Karlebach
& Shamir, 2008) and neural cluster interactions in the
brain (Stern et al., 2014) (see Methods; Supporting
Information IIT). In these models, our results highlight
the same simple and generic taxonomy: Global and local
states emerge in cooperative or weakly interacting sys-
tems with bistable units, while mutual exclusion states
and cliques emerge in the presence of dominant com-
petitive interactions without the need for local bistabil-
ity. This explains why the GLV model does not harbour
global bistability (no bistable units, x = 0 is not a stable
attractor) while the neural interactions model does not
harbour mutual exclusion states, as extinction due to inhi-
bition is not defined in the model (Figure 4d; Supporting

Information IIT). Furthermore, the fingerprints of each
regime are equivalent across models (Figure 4d). These
results highlight a key property of high-dimensional
multistability: bistability at the unit level can upscale
to generate global or local multistabilities, but cliques
and mutual exclusion can emerge even if the units of
the system are monostable and interactions are linear
(Figure 4d) (Bunin, 2017; Supporting Information IL.F,
IT1.A). This further emphasizes our need to move beyond
the current low-dimensional description of alternative
stable states when studying complex systems (Figure 1a).

CONCLUSION

Understanding how multiple stable states emerge in
complex systems is relevant to many fields of research.
In ecology in particular, it might play a pivotal role in
our capacity to predict and address abrupt shifts in
ecosystems (Kéfi et al., 2022). Our work highlights that
the current low-dimensional understanding of alterna-
tive stable states does not easily scale up when analysing
species-rich communities with multiple interaction types
and random structures (Kéfi et al., 2022).

By analysing archetypical models of complex eco-
logical communities and other biological systems, we
identified the emergence of four different multistability
regimes. Of these, two arise in cooperative or weakly in-
teracting scenarios if species are locally bistable, while
the other two manifests under predominantly competi-
tive dynamics even if interactions are linear and species
are not bistable. Furthermore, each regime leaves a dis-
tinct quantifiable fingerprint, providing a tool to further
test their occurrence in empirical datasets.

We propose that each multistability regime can be
related to well-established observations in ecology.
Interestingly, across the studied models, a catastrophic
shift signature only emerges under overwhelmingly pos-
itive interactions, which does not coincide with natural
evidence of abrupt transitions. This allows us to hypoth-
esize that non-random network structures are essential
ingredients of community scale catastrophic shifts in
ecosystems.

Our taxonomy suggests a constrained number of
multistability signatures expected to generically emerge
in high-dimensional biological models. These results
contribute to building a unified framework to under-
stand the nature and conditions by which multistability
emerges in complex systems.
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