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ON NONLINEAR FUNCTIONS OF LINEAR COMBINATIONS*
PERSI DIACONISt AND MEHRDAD SHAHSHAHANI

Abstract. Projection pursuit algorithms approximate a function of p variables by a sum of nonlinear
functions of linear combinations:

M foxi i xp) = 3 giamt e+ ap)

We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and
discuss nonuniqueness of the representation.

Key words. approximation theory, nonlinear high-dimensional nonparametric regression, polynomials,
Schwartz distributions

1. Introduction and statement of main results. We present some mathematical
analysis for a class of curve fitting algorithms labeled “‘projection pursuit” algorithms
by Friedman and Stuetzle (1981a, b). These algorithms approximate a general function
of p variables by a sum of nonlinear functions of linear combinations:

(L.1) flen, -y xp) = ;1 gi(anxi+- - +apxy).

In (1.1), f is a given function and univariate, nonlinear functions g; and linear
combinations a;1x1+: - +a,x, are sought so that a reasonable approximation is
attained. Such approximation is computationally feasible and performs well in
examples of nonparametric regression with noisy data, high-dimensional density
estimation, and multidimensional spline approximation. In addition to the articles of
Friedman and Stuetzle cited above, see Friedman and Tukey (1974), and Friedman,
Grosse and Stuetzle (1983) for examples and computational details. Huber (1981a, b)
begins to connect the algorithms to statistical theory. This note treats the algorithms
from the point of view of approximation theory.

It is easy to show that approximation is always possible.

THEOREM 1. Functions of the form ¥, a; e™™, with a; real, a' a vector of nonnegative
integers, and X =(x1, - * - , x,) are dense in the continuous real valued functions on [0, 11’
under the maximum deviation norm.

Proof. The functions e** separate points of [0, 1]° and are closed under multiplica-
tion. Finite linear combinations of such functions form a point separating algebra
which is dense because of the Stone-Weierstrass theorem. 0

THEOREM 2. Functions of the form

Y a; cos (2ma’ +x)+B;sin (2mb" - x)

are dense in L0, 17.

Proof. Any function in L*[0,1]° can be well approximated by its Fourier
expansion. See Zygmund (1959, Vol. 2) and the survey article by Ash (1976) for
further details and refinements. 0
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Sometimes equality is possible in (1.1). For example,
xy =i(x +y)’ —ax —y)%,
max (x, y) =3]x +y|+3lx -y,
7 1
4.3 2.3’
In what follows we will focus on conditions for equality in (1.1) as a method of

determining examples to test, compare, and evaluate algorithms. Consider first a
smooth function of 2 variables of the special form,

f(x,y)=glax +by).

3
(xy) =4 +y)'+ (x—y)*- (x +2y)4—%(x +3y)%.

Clearly,
] ad
——a—=\f=0
(bax aay)f
If f has the form
(1.2) fley)= 1 gilax +by),

then the differential operator

ﬁ (bi—a‘-aii>=li h

Cio T
=1\ 0x ay i=0 0x dy

applied to f is identically zero. The next theorem gives a converse.

THEOREM 3. Let f € C"[0, 11. Suppose that for some real numbers co, * - * , Cp, the
operator ¥_, c; 3"/ox" oy" ' applied to f is identically zero. If the polynomial ¥;_, c;z'
has distinct real zeros then (1.2) holds for some (a;, b;). The lines a;x + by are all distinct.

Theorem 3 is proved in § 2 which also contains a discussion of techniques for
finding directions (a;, b;) given f. Some applications of Theorem 3 are contained in
the following examples.

Application 1. The functions ¢™ and sin xy cannot be written in the form (1.1)
for any finite n. Indeed, the equation ¥ ¢;(0"/dx' dy" "){e**}=0 implies ¢; =0 and the
associated polynomial has complex roots.

Application 2. Let f(x, y) be a polynomial of degree m. Then

m

fl,y)= X gilax +biy),
where each g; is a polynomial of degree at most m. This follows by elementary
manipulations from Theorem 3. Thus, any polynomial in two variables can be represen-
ted exactly. Since polynomials are dense in C[O0, 1], this gives another proof of
denseness of projection pursuit approximations. A different proof of this result is in
Logan and Shepp (1975). An extension to more than two variables is in Proposition
1of §2.

Application 3. Representations of the form (1.1) are not necessarily unique. For
example,

xy =clax +by)2—c(ax —by)2
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for any a and b satisfying ab #0, a’*+b*=1 with ¢ =1/4ab. Writing a = cos 6,
b =sin 6, any noncoordinate direction can be chosen for the quadratic g;. The second
direction is forced as orthogonal to this. This suggests that substantive interpretation
of the linear combinations (a;, b;) is difficult. For a more ambitious example, consider
the function (xy)z. This is of 4th degree. Use of Theorem 3 as outlined in § 2, shows
that (xy)2 cannot be expressed as a sum of n =3 or fewer terms in (1.1). Four terms
of 4th degree suffice:

(xy)’ = a1(x +b1y)* +as(x +b2y)* +as(x +b3y)* +aa(x +bay)?,
where by, b,, b3, by are chosen as distinct, and satisfying
bib,+b1b3+b1bs+brbs+brbs+ b3b4 =0.

Then ai, a,, asz, a4 are determined by

ol X'
C6 [T b’

where the sum and product are over j#i. This clearly defines a three-dimensional
family of solutions.

In thinking about nonuniqueness, we observed that the only examples of non-
unique representation we could find are polynomials. Indeed, polynomials have the
following strong nonuniqueness property.

DEFINITION. A function f(x, y) has strongly nonunique representations if there
are two sets of directions {(a;, b;)}i=1, {(a;, B:)}i=1, all distinct from each other, such that

flx,y)= él gilaix +by)= "Z::1 hi(ax +Biy)

for some g; and A,

Polynomials have strongly nonunique representations: if degP(x,y)=n, and
(az b;)"21 are any distinct directions, Theorem 1 implies that P(x, y) can be represented
in these directions. It turns out that only polynomials have this property. This is a
consequence of Theorem 4.

THEOREM 4. Let f(x, y)e C"*™[0, 1]°. Suppose that for some directions {a;, b;}'-1
and {(a;, B:)}i%1,

fe,y)= éfl gi(ax +by) = i hi(ax +Byy).

If, for some i, (a;, B:) is distinct from (a;, b;), 1 =j =n, then h; is a polynomial of degree
at mostn +m —2.

Proof. Let
d ]
A=11 (B"ax 'a"ay)’
and
n d
B —]l;[l (ajg.;_bja)’)
Then,

Af =Y Ag; is a sum of functions in directions (a;, b;);
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SO
0=BAF =Ch{"*" " (ax +Biy)

for

C = {jnl (a;bj _’ﬁiai)} . {l;l (a,ﬂj —B,a,-)} # O
= i
Thus, k; is a polynomial of degree at most m +n —2. [

COROLLARY. A function f(x, y) has strongly nonunique representations if and only
if fis a polynomial.

Remark. The statement and proof of Theorem 4 carry over to functions of more
than two variables in a straightforward way. See Lemma 1 of § 2.

How are the curve fitting algorithms affected by nonuniqueness? To understand
this, we performed the following experiment. On each trial 200 independent, mean
zero, variance 1, normal points (x; y;) were generated. The algorithm of Friedman
and Stuetzle was given x;, y;, and x;y; +¢&,, with g normally distributed, mean zero,
variance .1 errors. We expected the directions fit to change a great deal. In each of
100 trials the algorithm fit univariate functions in directions (1, 1) and (1, —1) (to two
decimal places).

To understand this, it is important to consider the nature of the algorithm. At
each stage, it chooses the direction which minimizes the residual sum of squares when
the best fitting function in that direction is subtracted off. See Friedman and Stuetzle
(1981) for a careful description. If the sample size is large, the algorithm will behave
in the same way as the infinite population analogue. Thus, let X, Y be independent
Gaussian variables with mean zero and variance 1. Consider approximating XY by
the best linear combination of the form aX + bY. For fixed a and b, the L? norm is
minimized by the function E(XY|aX+bY). Which values of a and b, subject to
a’+ b*=1, minimize

E{XY-E(XYl|aX +bY)}*?
Let us show that the minimum is achieved at a =+b =:|:1/~/§. Let U =aX +bY,
V =aX —bY. Then U and V are independent standard normal and

_ Ly N ey
XY—4ab{U V3, E(XY|aX+bY)—4ab{U 1}.

Then,
E{XY-E(XY|aX +bY)f = ( 4ab)2E{(U2— VH—-(U*-1)Y
1 2
= (4ab)2E{V -1y

Since the distribution of V' does not depend on a and b, the right side is minimized
when a®=5>=3. When the best fitting function is subtracted off, the second stage of
the algorithm subtracts off a quadratic in the orthogonal direction and the algorithm
terminates after two steps. The same result can be shown to hold when X and Y are
chosen uniformly in [-1, 1],

Similar computations can be instructively carried out for functions other than
XY. For example, consider (XY)>. David Donoho has shown that if X and Y are
normally distributed the algorithm chooses the four directions (1, 1), (1, —1), (1, 0),
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(0, 1). Moreover, Donoho can prove that the approximation does not terminate after
four steps, even though the function can be expressed as a sum of four 4th degree
polynomials. Infinitely many steps are required—successive terms being cyclically
added in each of the four directions.

Donoho and Ian Johnstone have independently proved that for normally dis-
tributed X and Y, the greedy approximation, which at each stage finds the a and b
to minimize

E{fu(X, )~ E{fa(X, Y)laX +bY}Y,

converges in L.

These results underscore a property of the projection pursuit algorithm: the
directions it chooses are the directions that minimize the L error. The situation is
somewhat like finding the principal components of a covariance matrix. There are
many possible bases, but the directions chosen have a well-defined interpretation in
terms of maximum reduction of variance.

Application 4. Even if the directions (a;, b;) are fixed, the representation need
not be unique. Suppose that # is the smallest integer such that

flx,y)= :21 gi(ax +biy).
If also
flx,y)= ,‘_21 hi(ax +biy),

then
fie)=hi()=pi(t), 1=i=n,

with p; a polynomial of degree at most n — 1. The polynomials p; can be chosen in an
arbitrary way subject to the constraint ). p; =0. In particular, any n —1 of the p; can
be chosen arbitrarily and a final polynomial can be found to satisfy the constraint.
These results all follow easily from Theorem 3; indeed the operator L;=
[1;.:[6; 8/0x —a; 3/0y] applied to f(x, y) gives
hgn_l) (aix +biy) ] (bja; —ab;) = 8£n—1)(aix +biy) I1 (bja; —ab;).
j#Ei jEi

The products are nonvanishing because the directions are distinct. It follows that A;
differs from g; by at most a polynomial of degree n — 1, and that an arbitrary polynomial
may be added subject to the constraint.

In the special case n = 2, Theorem 3 was given by Dotson [4] who suggests further
application to factoring probability densities and separation of variables.

The generalization to dimension greater than two is not as neat. We give a result
for three-dimensions which generalizes to p-dimensions. Suppose that for n distinct
directions a'’ € R?, a function f can be represented, for x € R’ as

(1.3) fw= % gl ).

LetIl'={peR’: p - a’ =0}. Let V= (8/dx1, 3/3x2, 3/0x3). Clearly,

[T V)f=0 forallp'ell.
i=1
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This condition is not sufficient. To see this, consider the function f(x,, x5, x3) =x1x,
and the three directions a 1.= (1,0,0),a*=(0, 1, 0)and a’®=(0, 0, 1). For any nonzero
p'ell’, the operator II(p' - V) applied to f is zero. Yet, f cannot be written as
f(x)=f1(x1) +falx2) +f3(x3).

The condition is sufficient “‘up to polynomials’:

THEOREM 5. Let a" be distinct, nonzero, directions in R®. Let TI" be the plane
{peR’ a"-p=0} A function f € C" (R®) has the form

f@)= X @)+ P(x)

for a polynomial P of degree less than n, if and only if
(1.4) [ (o' -V)f=0 forallp eIl
i=1

Remark. As noted above, condition (1.4) is not sufficient to ensure that rep-
resentation (1.3) holds. If (1.3) holds, there are other obvious necessary conditions: if
p” eI' NI, then

(" - V)gi(a' - x)=(p" - V)gila' - x)=0.

Thus, f is annihilated by differential operators of degree [(n+1)/2], - -,n—1.
Unfortunately, even these conditions are not sufficient. H. Royden, in unpublished
work, has determined necessary and sufficient conditions of a rather different type.
These are stated at the end of this paper. In Proposition 1 of § 2 we show that any
polynomial P can be written as a sum of univariate polynomials of linear combinations.
If deg P=k, then (k+1)(k+2)/2 terms may be required.

Thus far we have been assuming sufficient differentiability. Versions of all
theorems are valid if derivatives are interpreted in the sense of distributions. This is
discussed in some detail in § 3.

Our theorems are related to Hilbert’s 13th problem. In modern notation, Hilbert
asked if there are genuine multivariate functions. Of course, x +y is a function of two
variables but xy =e'****'*®” is a superposition of univariate functions and +.
Kolmogorov and Arnold showed that, in this sense, + is the only function of two
variables. They constructed five monotone functions ¢;: [0, 1] R, which satisfy |¢;(x ) —
& (y)|=|x —y|. These functions have the following remarkable property: for each
feC[0, 1T there is a g € C[0, 1] such that for all (x, y),

fx, )= % g +38:0).

Thus ¢; are a “‘universal change of variables” which allows exact equality. A nice
discussion of this result and its refinements can be found in Lorentz (1966), (1976)
and Vitushkin (1977). While the functions ¢; and g are given in a constructive fashion,
it does not seem that this result is used to approximate functions in an applied context.
This is probably because the functions ¢; are fairly “wild”. For example, it is known
that it is not possible to choose ¢; to be C' functions, so fixed linear combinations of
x and y are ruled out. It is known that f(x, y)=Y|_, g:(ax +b;y) for all polynomials
f(x,y) is not possible with a;, b; fixed independent of f. In the projection pursuit
approach to approximation, a; and b; are allowed to depend on f and Example 2
shows that now any polynomial can be written in required form. Example 1 shows
that not all functions can be so expressed.
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This paper has characterized functions that can be represented exactly as a sum
of nonlinear functions of linear combinations. It is important to be able to recognize
functions that can be well approximated by such a sum. Some important work on this
problem is in the papers by Logan and Shepp (1975) and Logan (1975). These papers
work with prespecified directions, but the main results of Logan (1975) do not depend
on the directions. Roughly, Logan shows that a function on the unit disc can be well
approximated, in L?, by a sum of n univariate functions if and only if the function
has bandwidth #n, in the sense that its Fourier transform is essentially supported on a
disc of radius n.

2. Proof and discussion of Theorems 3 and 5. Let L be the differential operator:
Y oci9"/ox" ay" . By hypothesis, the polynomial

Yoex'y" T =y" ¥ ci(f)

i=0 i=0 \y
splits into distinct linear factors. Thus, L can be written as [][b; 9/0x —a; 8/dy], with
the lines ax +b;y distinct. It must be shown that f can be represented as Y|, gi(ax +
biy). The proof is by induction on n. For n =1, suppose without real loss that a, # 0.
Then f(x, y) = g(aix +b,y) with g(z) =f(z/a;, 0). One way to show this is to fix (x, y)
and define h(¢)=f(x +(bi/ay)y —(bi/ar)yt, ty). Then h(0)=f(x+(bi/ay)y,0)=
glawx +b1y); h(1)= f(x, y) and A'(t)=0, for 0=¢=1. The fundamental theorem of
calculus gives h(1) = Io h'+h(0). Suppose the result is true for operators of degree
=n —1. To prove it for degree n, write

I L L G | (e

By the induction hypotheses, there are functions g;, 1 =i =n — 1 satisfying

o 9\, ot
2.1 (bng-'an 5)f= i; gi(aix +biy).

A solution f* of (2.1) of the form
n—1
frx,y)= L hilax +biy)

is found by choosing h;(t) = (b.a; —a.b;) [0 gi(s) ds. This is well-defined because the
lines are distinct. Now {b, 9/0x —a, 8/9y}(f —f*)=0 can be solved explicitly with
(f—f*)(x,y) =h,(a.x +b,y) by the argument for n = 1. It follows that f =f*+#h, can
be written in the required form. 0

Remarks on explicit computations. If f is of the form (1.2) then Theorem 3 gives
the existence of numbers cq, * * + , ¢, such that Y¢;(3"/ox’ ay"')(f)=0. The ¢; can be
found by fixing n + 1 distinct pairs (x;, y;), calculating 8"/ox’ 9y" | ., and solving the
resulting system of equations for c,. It is feasible to check if the polynomial co+- - - +
c,z" has distinct real roots using techniques in Henrici (1977, Chap. 6). Each stage
of the procedure is feasible by a finite algorithm. If the procedure fails at any stage,
then equality is impossible. Given feasible ¢y, - * *, ¢,,, it may be possible to find the
roots of the associated polynomial. This determines directions (a;, b;).
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In simple examples there is often enough freedom of choice to make determination
of (a;, b;) possible. Consider f(x, y) =xy forn =2,
2 (, o af) 2f o’f of
bi—— b1b, —5—(b1ar+b + —3.
il;ll ( ax By 2 (b1az+bray) ox dy aia:z ayz
Since 8°f/ox>=d*f/ay* =0, 3°f/ax dy = 1; any distinct choice of a; and b; with bya, =
—bya, works. Taking a; =b; =1, a;=—b,=1, we are led to solve

flx,y)=gilx +y)+galx —y).

Applying 8/dx —3/dy to both sides leads to y —x =2g5(x —y); setting y =0; g3 (x) =
~x/2, g2=-x/4+c,. Similarly, gi(x)=x?>/4+c, and the result is xy=
i +y)2+c1 —ix— y)2+c2 where c¢;+c¢,=0 is forced. In general, if f=
Y1 gi(ax +biy); Tl . (bi /9x —a; 8/dy)f = cig" P (ax +by), for an explicit ¢;. This
determines g; up to an essentially free choice of an n —1 degree polynomial.

In the case of a polynomial f, some additional tricks become available. For a
multinomial x°y® let a +b =n; only sums of the form Y ai(x+By)" need be
considered. Expanding out and equating coeflicients gives

Ya; =0, YaBi=0 ZCVB; 'Zaiﬂ;':()

( )
This gives n +1 equations in 2n unknowns. These are linear in the «’s for given B’s
and may be solved explicitly because the matrix is a Vandermonde with a well-known
inverse. See Gautschi (1963).

The proof of Theorem 5 was outlined by H. Royden. The proof follows from
three lemmas. Throughout a’ are distinct nonzero directions in R’.

LeEmMA 1. If Z, cg(a" +x)=0then g " =0 and g, is a polynomial of degree at
most | —2. )

Proof. Fix r. For each j#r there is p’eIl’ but p’ -a” #0. Apply the operator
[l;., (0’ - V) to the sum to conclude l_[j#r(pi ~a")g" V(p’ - x)=0. The coefficient is
nonzero, so the conclusion follows. 0

In the next two lemmas, the notation f; means df/dx;.

LEMMA 2. Let P and Q be polynomials of degree =k in (x1, x2, x3). Suppose that
in some open 0 <R’

P3=Q;.
Then there is polynomial H of degree at most k + 1 such that
P=H, and Q=Hs;.
Proof. Argue in a cube {a =x;=a, b=x,=8, c =x3=v} contained in 0. Let "

be a path connecting (xi, a, b) to (x1, x2, x3) which lies entirely in the plane of constant
x1. The line integral

LP(xl, v,2)dy +Q(x,y, z) dz = H(x1, X2, X3)

is independent of I in view of the hypothesis and Green’s theorem. Furthermore,

dH =Pdx,+Qdxs.
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Here d is exterior differentiation in the plane x; = constant. Therefore
%ﬁ =P and %: =Q.
In particular, let I" be the path
t>(xy,a+t(x,—a),b), 0=st=1,
t> (X1, x2,0+(t—1(x3-0b)), 1=t=2.

Then,
1

H(x1,%2,x3)=(x2—a) J P(xi,a+t(x,—a),b)dt
o

2

+<x3—b>j1 P, xa, (¢~ 1)(xa— b)) dt

which is clearly a polynomial of degree =k +1. 0O
LEMMA 3. Let fe C""*(R®) have the following properties: for n distinct directions
a', with a" distinct from (1, 0, 0),

(2.22) fa6)= ¥ ga’ - x)+P(),

(2.2b) fa(x) = gl h(a - x)+Qx).

With P and Q polynomials of degree at most n — 1, then there are univariate functions G,,
1=r=n+1, and a polynomial H of degree at most n such that

flx)= 21 G.(a" - x)+Gpii(x1)+ H (x).
Proof. Because f53 = f3,, conditions (2.2a) and (2.2b) translate into
0=1% (a3gr —ash; )@ - x)+Ps(x)— Qx(x).

By hypothesis, for i #r there are vectors p’ € IT' withp’ - a” #0. Let A =[], (' V).
Applying A to P;(x)— Q2(x) gives zero because this polynomial is of degree at most
n —2. Thus,

_ r _(n) rgp (n)
0=c{asg,” —azh,"’},
where

c=T] (' -a")#0.

i#r
It follows that
(2.3) asg.(a"-x)—ash,(a" - x)=P/(a" - x)

for P a polynomial of degree at most n — 1. Because the a” are distinct from (1, 0, 0),
either a3 # 0 or a3 #0. Define the n functions G, by

(2.4a) G,=g/a; ifas#0,
(2.4b) G,=h,/as ifa5=0.
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Consider
& (x) =f(x) - gl G.(a - x).

From the hypothesis, (2.3) and (2.4),
#2(x) =fa(x)-L a>G:(a’ -x)=a52=0gr(a' “x)+P(x)=P*(x)
with P* a polynomial of degree at most n — 1. Further,
#3(x)=f3x)-La3G'(a" - x)=2L{h(a" - x)—a3G'(a" - x)}+ Q.
Each term in the sum is a polynomial. If a5 # 0, the rth term equals
h(a"-x)—asg.(a" - x)/a>
a polynomial from (2.3). If a5 = 0, the rth term is zero. It follows that
¢3=Q*(x)

with Q* a polynomial of degree at most n — 1. To finish off, observe that ¢.3= ¢3
gives P¥ = Q%. From Lemma 2, there is a polynomial H of degree at most s, such
that H, =P* and H; = Q%*. The function ¢ =¢ —H has ¢y, =¢3=0. Thus, ¢ is only
a function of x;, as required. O

Proof of Theorem 5. Clearly, if f can be represented as a sum of n univariate
functions plus a polynomial the differential operator kills f. The proof of the converse
is by induction on n. For n =1, we know that if f, =f3;=0 then f is a function of x;
only. Rotating to bring the plane IT' into {p: p,=p; =0} proves the general case.
Suppose that the result is true forn —1. Leta ', a?, - - -, a"', a" be n distinct nonzero
directions. By rotating, we may assume that a" =(1 0 0). Then, for any p' eIl
1=i=n-1,

' - Vfo=I(p' - V)f3=0.

The induction hypothesis yields that f satisfies conditions (2.2) of Lemma 3. The
theorem follows. [

PROPOSITION 1. Let p and k be positive integers. Letr = ("*2"). There are r distinct
directions a',a’,- -, a" in R® such that any homogeneous polynomial f of degree m
can be written as

fx)= Y a;(@’ - x)™ for some real numbers a,.
j=1

Proof. The space of homogeneous polynomials of degree m is an r-dimensional
vector space over the real numbers. Let m;(x), 1=i=r be an enumeration of the
monomials. For each monomial, let D; be the associated differential operator (e.g., if
mi(x) =x3x:x3, D;=0"/ox30x,dx3). Observe that D;(a’ -x)"=m!m;(a"). For
dimension reasons, to prove the proposition it suffices to show that directions a’ can
be chosen so that the polynomials (@ - x)", j=1,---,r, are linearly independent.
Suppose

Y, cj(aj -x)"=0.
Applying D; we get

) mi(a’)c;=0 foralli=1,---,r.
j=1
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For this system to have a nontrivial solution (cy, - * -, ¢,), we must have
(%) det (m;(a’))=0.
We write a’ = (a}, - - -, af,). Since det (m;(a’)) is a nontrivial algebraic expression with

rational coefficients, if we choose the pr real numbers a’ in such a way that they are
algebraically independent over Q, then

det (m;(a’)) #0,
contradicting (*). 0O

3. Some generalizations. The theory presented so far does not apply to identities
between nondifferentiable functions. Most of the results remain valid if differentiation
is interpreted in the sense of distributions. Consider the identity

max (x, y) =3(x +y|+|x —y]).
For fixed y the function max (x, y) is constant for x =y and equal to x for larger x. Thus

9 _ {0, x <y,

ax max(x,y)——{l’ x>y.

This function is also called the Heavyside function shifted to y. Its derivative is well
known to be the delta function concentrated on the line x = y. This acts on ¢ € Cg (R?)
by 8(¢) = ¢ (¢, t) dt. Similarly, 9°/dy* max (x, y) =4, so max (x, y) is a solution of the
wave equation

& 9
—U—-——U-=0.
ox? 6y2

The only solutions of this equation are of the form U = f(x +y)+f2(x —y) where f;
and f, are distributions (see Schwartz (1966, p. 9) for some history). We further show,
here and more generally, that if the solution U is a sufficiently well-behaved function,
then the f; are functions.

Any undefined terms in the following discussion can be found in Barros-Neto
(1973) or Schwartz (1966). Let @(R) be the space of test functions—compactly
supported C functions. The dual space @'(R’) is the space of distributions on R’
For y =(a, b), the translate of T €@’ by y is written T,. This acts on ¢ €D by
T, {¢(x)}= T{¢(x —y)}. The distribution T € D'(R?) depends only on ax + by if for all
real t, T(p—ar = T. The following theorem collects together several results in Schwartz
(1966, § I1.5). It is the case m = 1 of the theorem at which we are aiming.

THEOREM 6. Let T € 9'(R?). For (a,b) nonzero, the following conditions are
equivalent:

(a) T depends only on ax + by.

(b) (b 3d/ox —a d/ay)T =0.

(c) There is a distribution g€ D "(R?) such that for all ¢ € D(R?),

T(¢)=gU ¢ (au +bv, bu —av)dv}

where g operates on the function of u inside the brackets.
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Remark. If T and g are functions with T(x, y) = g(ax +by) and a*+ 5= 1, then
part (c) becomes

76)= || T80 y) drxdy = [ [ gax +by)16x, ) de ay

= Jj g(u)g (au +bv, bu —av) du dv =g{j & (au +bv, bu —av) dv}.

Notation. If T satisfies any of the three conditions of Theorem 6 we write T = g% (g)
where y = (a, b) and g, is the linear map from R* -> R given by q,, (x, y) = ax + by. We can
now state the distribution version of Theorem 3.

THEOREM 7. Let T € @'(R?). Suppose that for some real numbers co, c1," * * , Cms
the operator ¥, c; 3™ /ax' ay™ ' applied to T'is zero. If the polynomial ¥, c;z" has distinct
real zeros then there are distinct nonzero yi,vy2,* * *, Ym; vi = (@i, b;) such that, writing
qi for 4y,

3.1) T=7Y qf(g) withgcD'R).
i=1
Conversely, if (3.1) holds, then 1] (b; 3/3x —a; 3/dy) applied to f is zero.
Proof. One direction is clear; the argument for the other direction is by induction

on m. The case m =1 follows from Theorem 6. Thus, assume the result for m —1.
Without loss of generality, assume a; +57 =1 for 1=/ =m. Then

m d d d d
i —ai— ) b1 ——ai—)f=0.
,'132 (b ax 4 ay)(blax alay)f
This implies
9 ad m
(3.2) (b1 2-ar ) f= £ at e
ox dy i=2
We will show that (3.2) has a solution f* of form
f* = ‘22 qik (h,)
Supposing this, (b1 8/dx —a; 8/3y)(f —f*) =0,so by the result form =1, f — f* = q7¥ (g1)
for g1€ 2'(R) giving the theorem. To complete the proof, let h; be a distribution

solution to

di_ 1
dt bla,' —alb,» 8i

A solution exists by Schwartz (1966, Thm. IX, p. 130). We claim
'gzq?‘(hi) =f*
is a solution to (3.2). To show this, we need the following relation:

d
aq*(h')=—-q*(h).
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To prove this, consider ¢ € Cy (R?). Now
aq*(')(@) = ah( [ & (au+bv, bu~av) dv)
= —h(I [ad1(au +bv, bu —av) + bep,(au + bv, bu —av)] dv).
Since ¢ is compactly supported
j %(q&(au +bv, bu —av)) dv =0.
Thus,
I [bd1(au +bv, bu —av)—a¢,(au +bv, bu —av)] dv =0.
Using this gives

aq*(h') (@)= —h(I [a*p1(au +bv, bu —av) +b>¢1(au +bv, bu —av)] dv),

= —h(I @1(au +bv, bu —av) dv)
d
=g¢1*(h)(¢).

Thus, (b, 8/0x —a; 8/3y)q¥ (h:) = q¥ (g:). The claim regarding f* follows. 0O
The next theorem shows that if the equation

fy)= ¥ at(s)

holds in the sense that the two sides are equal as distributions, and if f(x, y) is a
sufficiently regular function, then each of the distributions g; can be realized as a
function on R. Theorems of this sort may be described as results on propagation of
singularities of partial differential equations.

The notion of “sufficiently regular’” which we adopt involves the Sobolev spaces
H’; the definitions involve Fourier transforms, and so the space & of C™ functions
that, together with all derivatives, tend to zero at infinity faster than any polynomial.
The dual of &, denoted &' is the space of tempered distributions. The Fourier transform
of ¢ € F(R’) is

)= ” e "¢ (x) dx,
where dx is 1/27 times Lebesgue measure. The Fourier inversion theorem becomes
s =[] M da)an

The Fourier transform of a tempered distribution 6 € &' is defined by

6(¢)=0($).
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For real s, —00 <s <0, the Sobolev space H *(R?) is the set of tempered distributions
6 € S'(R%) such that (1+|p|*+|n[>)**f(p, n) € L*(R?). There are various embedding
theorems that say when a distribution is a function. For example, Taylor (1980,
Chap. 1, § 3) gives:

(a) If s>n/2,theneach € H*(R") is a bounded continuous function that vanishes
at infinity.

(b) If s >n/2+k, then H*(R") = C*(R").

(c) For0<a <1, define C* as the set of bounded functions u such that [u (x +y)—
u(y)|<Clyl* for ly|=1.If s =n/2+a, 0<a <1, then H*R") = C*(R").

d) If0=s<n/2, H (R") < L*(R"), q =2n/(n —2s).

We have chosen the route of interpolating between integer values of s by means of
the Fourier transform. There are other routes. See Adams (1975) for discussion.

For U open in R%, H,.(U) is the set of distributions 6 € @'(U) such that for
each compactly supported ¢ €Cq (U), ¢ -0 H *(R%). For example, max (x, y)e
H 1o (R*). With this notation, we can state the main result.

THEOREM 8. Let v; = (a;, b;), 1 =i =m be distinct nonzero directions in R*. Let g;
denote projection in the direction v;, so qi(x, y) = ax +b;y. Let U be open in R®. Let U;
be open sets in R with q{l (U;)2 U for all i. Suppose f € Hio. (U) can be written

f=% ate),

where g, € D'(U;). Then g; € Hi,. (U;).

The proof of Theorem 8 will be given following two preliminary lemmas. Let
(a, b) be a unit vector in R*. Let q(x, y)=ax + by denote the projection. For g € ¥'(R),
the distribution g*g acts on ¢ € #(R®) as g ([ ¢(au +bv, bu —av) dv). The distribution
P& acts on functiggs ¢ € F(R?) by g(¢(at, bt)). We have the next lemma.

LEMMA 4. (g%g) = p.(§).

Proof. q*g(y)=q g(n//)—g{j'n//(au + bv, bu —av) dv}. Now the integral equals

r

[ ertamsamncitnan g ) deaydo= [ etossmmi ety y) draydo

= | e ™ (as +bt, bs —at) ds dt dv

=" e_is“{j e "¢ (as +bt, bs —at) dt dv} ds.
The inner integral equals ¢ (as, bt); indeed for any function g € C5 (R), [ e™g(¢) dt dv =
5(8) = 8(g) = g(0). Making this substitution, proves the result. O

The next lemma is the case m =1 of Theorem 8.

LEMMA 5. Let m:R*~> R be the projection w(x,y)=x, UicR and U > 7 '(Uy).
Let T € 9'(U) and assume there is g € D'(U1) such that

T =7m*(g).

If T e Hioo (U), then g € Hioe (Un).

Proof. Without loss of generality we may assume U =7~ Y(U,) since T =mw*(g).
Let Vi< Vi< U, and V; open, V1 compact, and y € Cg (U;) with y =1 on V. Then
it suffices to show yg € H*(R). Let f = xg and 6 = w*(xg). Then the hypothesis on T
implies

0 € H}o. (RY).
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Let ¢(x,y)=¢1(y) with ¢; € Cg (R) such that

1, ly|=r,
0, Iyl%R,

for some constants 0 <r <R. Then ¢y € Cq (U), so
#0 € H*(R).

$10) =]

This means q;b is a function and

(3.3) [ [ 1688206, P+ o+ Inf?y? dp dm <0,

We will argue that (3.3) implies f € H*(R). Lemma 4 implies that 6 = p(f). Moreover,
f is an analytic function of one variable, being the Fourier transform of a distribution
of compact support (see Barros-Neto (1973, § 4.5)). Thus

(3.4) 6(p, 1) =f(p)so(n).
Also,
(3.5) b0, m)=80(p)b1(n).

Using ($#6) = & #8 with (3.4) and (3.5),

(#6)(p, m) =1(n) - flp).
Thus, (3.3) becomes

(36) JJ’ i&l(’?)|2|f"(p)|2(1 +lp|2+ |n|2)s/2<m.

Now elementary arguments show that for any real s there are positive constants pi,
p2 such that

pilpl’ <I |¢;1(’fl)12(1 + |Pl2+ |17|2)s/2 dn <palp|° for |p|=1.
Using this and (3.6) gives
-1 .
[ 176t do+ | 10)Plol dp <.

Hence, the desired result:
[ 7P +10P" dp < co. .

Proof of Theorem 8. We may assume v; are unit vectors. The case m =1 follows
from Lemma 5 via linear transformation. For the general case, suppose

f= ;1 qi (g).
Let D; =[1,,; (b; 8/3x —a; 8/dy). Then, for a nonzero constant C,

Dif =Dg¥(g)=Cq¥ (g™ ™").
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Since fe H}o. (U), Dif e Hio" " (U). By Lemma 5,
g™V e Hig" " (Uh).
This implies that g; € Hj,. (U1), see for example Treves (1966, Thm. 7.6).

Acknowledgment. We thank David Donoho, Jerry Friedman, Bob Hulquist,
Winni Li and Bruce Reznick for helpful discussions. Two extremely helpful referees
found a gap in the original version of Theorem 5. We are grateful to Halsey Royden
for allowing us to use his elegant proof of the corrected version.

Note added in proof. Halsey Royden has communicated the following conditions
necessary and sufficient for a function f of m variables to be representable as a sum of N
univariate functions: Let a =(a,," " -, a,,) denote a multi-index of weight } «;. Let
f. denote the appropriate partial derivative and f,; = (8/0x;) f..

THeoreM (H. Royden). Let N = (™*[7"). Then a smooth function f(x,," - -, X,)
can be written

N
f= gl gv(z azxk)

where the N vectors a” = (a}) do not lie on a hypersurface of degree | in projective m — 1
space, if and only if there are functions h,, an invertible N X N constant matrix C =[C.,]
where a runs over the N multi-indices of weight 1) and N m X m constant invertible
matrices B, =[B/, ] such that

Z CﬁfajB{cu =811(hv(x1’ Tty xm)-
a,j

Here &}, is Kronecker’s delta function. The functions g{” are then uniquely defined (so
the representation is unique up to polynomials of degree /—1) and the directions a,
are unique for those »’s with gf,’) #0.
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