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Self-organization of ecosystems to exclude half of all potential invaders
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Species-rich Lotka-Volterra competition models of ecosystem dynamics transition with increasing species
pool size from a phase with well-defined stable equilibrium to a dynamic phase that remains incompletely
understood. We analytically describe the statistical mechanics of the steady state deep inside this dynamic phase,
characterized by incessant turnover in species composition, and extract the distribution of invasion fitness of
random invaders. We find that steady state invasion probability universally equals 1/2. This striking result agrees

well with observations in plants and animals.
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I. INTRODUCTION

Biodiverse ecosystems on large spatial scales exhibit such
a wide range of reproducible, emergent high-level properties
[1] that we might consider them a distinct state of matter,
accessible to methods from statistical mechanics. Entropy
maximization [2] and field-theoretical methods [3] have been
invoked to describe such systems and explain, e.g., widely
observed noninteger power laws relating study area to species
counts (species richness) [3,4].

Such spatiotemporal structures formed by interacting
species populations are reproduced in simulations of spatially
coupled systems of Lotka-Volterra competition models [5,6]
of the form

Spool

db; .
E = |8 — ;Aijbj bi+u (1<i< Spool)- (D

Here ¢ is time, b; > 0 are the time-dependent population
biomasses of Spo Species i competing in the region, s; are
population growth rates in absence of competition, and the
elements A;; of matrix A quantify the strengths of intraspe-
cific (i = j) and interspecific (i # j) competition. The term
in brackets in Eq. (1) approximates the momentary popula-
tion growth rates of interacting species as a linear function
of population biomasses. Rescaling biomass variables, one
canset A; =1 (1 < i< S). The ¢; represent spatial coupling
(immigration) to neighboring locations. With ¢; = 0, we can
distinguish the S species extant (b; > 0) in an equilibrium and
all others (b; = 0). Equation (1) then has several equilibria,
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called ecological communities, distinguished by different (in-
dex) sets of extant species £, called community compositions.

We consider a weaker interspecific (i # j) than intraspe-
cific competition (0 < A;; < 1) and absent or very weak
spatial coupling (¢; = 0). Under weak coupling, extant and
extinct species can be distinguished using heuristic criteria
[5]. Substantial progress was recently made in understanding
Eq. (1) when interspecific A;; are assigned random values
(fixed through time) and species richness S = |£] is large. We
focus on the empirically well-supported case [7] where the A;;
are independently and identically distributed (i.i.d.) with mean
w and variance o? (though correlated A;; and A j; are also often
considered [8—10]). Higher moments play only minor roles in
the limit S — oo [11].

Random matrix theory predicts that for high species rich-
ness Eq. (1) becomes an ill-defined problem, a phenomenon
called ecological structural instability ([12], Eq. (18.1)): when

ger (1 —p)?
S > Sgs1 = Q2 2

the area in the complex plane covered by the eigenvalues
of the matrix {A;;}; jee includes zero [13]. Population abun-
dances are then highly sensitive to perturbations such as
changes in the s; or addition or removal of species. This
implies more species than Sgg; are unlikely to coexist [5].
For Spool < 28gsi, the “unique fixed point” phase, populations
reach an equilibrium where S < Sggy species coexist, with the
rest extinct [8]. At Spoo1 = 2Sgs1, where § = Sggi, the system
exhibits a phase transition [8]. For Spoo > 2Sgsi, in the so
called “multiple attractors” (MA) phase, system dynamics
is only partially understood. There is, with all ¢; = 0, gen-
erally no stable equilibrium in this phase, because for each
equilibrium there is at least one locally extinct species that
could invade (i.e., its linear population growth rate is positive).
These invasions are represented by heteroclinic orbits in phase
space that each lead from one equilibrium to another [14]. The
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resulting heteroclinic orbit network contains (as a directed
graph) at least one strongly connected component [15] thatis a
stable attractor of system dynamics. On this attractor, the com-
munity transitions between different community compositions
at an approximately constant rate on a logarithmic time scale
[6]. For fixed small but positive ¢;, this network is perturbed,
leading to slow switching between different community com-
positions on a linear time scale.

In the explicitly spatially extended case, so-called meta-
community models [1], the ¢; are dynamically determined by
neighboring communities, quantifying the coupling between
the local Lotka-Volterra equations (1). For these models a sim-
ilar phase transition is observed in simulations as the number
of interacting communities increases [6,16].

In this paper, we make advances characterizing the statisti-
cal mechanics of the MA phase for Syo01 > Sgst > 1. This is
achieved by approximating Eq. (1) by a community assembly
model [17]. In this model we construct an ecological commu-
nity by iterated invasions of random species. Extant species go
extinct as a result of competition and a steady state is reached
where invasions and extinctions are balanced. We assume,
supported by simulations over a wide parameter range, that
extinction occurs only to low-biomass species and only after
the invasion of a new species. In other words, the changes in
community composition and biomasses as a result of a single
invasion are small—there are no mass extinctions or sudden
changes. The community assembly process, particularly the
probability of successful invasion pj,y, have been the subject
of many studies [17-21]. It is a quantity of practical rele-
vance in conservation ecology, where alien species invasions
are considered a problem, and an important characteristic of
community structure and dynamics. Our objective is to calcu-
late piny in a steady-state community experiencing continuous
species turnover through invasions and extinctions.

II. METHODS AND RESULTS

The state of our model, approximating Eq. (1), is char-
acterized by the community composition £. It changes by
invasion of species k ¢ £, sampled at random conditional to
k being able to invade (explained below). Since we are con-
sidering the case Spooi > Sest = O(S), k’s interactions A j,
Ayj (j € &) are effectively i.i.d., sampled from a distribution
with support 0 < Ajx < 1 as above. The immigration terms
t; in Eq. (1) are disregarded in this approximation. Denoting
ET = {k} U &, population dynamics of the assembly model
between invasions is given by

db; :
D - Y b deen. o

jeE+

with initial conditions such that the species in £ are in equilib-
rium and k has small, positive abundance (0 < by < 1/|€)).
From there, the system typically reaches a new unique stable
equilibrium [found, e.g., by simulating Eq. (3)]. After this, the
set £ of extant species is updated accordingly and the process
is repeated, leading to a stochastic steady state where invasion
and extinctions balance each other on average.

Our calculation makes use of a close relation between two
quantities. First, the harvesting resistance of extant species i,

defined as the inverse susceptibility r; = (d In(b;)/ ds;)"'[12],
Sec. 14.5. It can be computed as

r=si— Y Aybj, @

je&\li}

with the b; chosen to satisfy s; — Zjeg\{i} A;jbj =0 for all
[ € €\ {i} (see details in the Appendix) [12], Sec. 14.5. Sec-
ond, invasion fitness, the linear growth rate of new invaders
k ¢ &, which, by comparison of Eqs. (3) and (4), is given by
Eq. (4) with i = k. As a general rule, r; > O for all extant
species, and k can invade if and only if r; > 0. Invasion
probability pj,y is the probability that r, > 0 for a randomly
sampled invader k.

For simplicity, we assume the same value s for all s;. In this
case, r; and b; are approximately proportional to each other,
such that ([12], Eq. (17.23))

LN const. & (1 — ). (®)]
bi

For new, random invaders i = k, the A;; in Eq. (4) are
random. Assuming a sparse matrix A;; such that the ex-
tant biomasses are weakly correlated, the invasion fitness 7y,
Eq. (4), is therefore for large S normally distributed. Since
community turnover leads to slow random changes in invasion
fitness, we therefore assume (and verify in the Appendix),
that, for a randomly chosen potential invader k that never ac-
tually invades, ry follows an approximate Ornstein-Uhlenbeck
(OU) process ([12], Sec. 14.6) with mean 7 and variance varr.
We introduce a new, slow time scale 7' that measures the
number of successful invasions in the assembly model and
denote the OU relaxation rate on this time scale by p.

Now consider the alternative case where 7 is one of many
(S > 1) extant species. Because r; is given by the same
formula as r;, Eq. (4), we assume that between successive
invasions the dynamics of r; follows the same kind of random
walk as r. At the moment when i invades, r; follows a normal
distribution with mean 7 and variance varr, conditional to
r; > 0. Its extinction occurs when r; reaches zero.

The relaxation rate p is therefore determined in two dif-
ferent ways: (i) as the relaxation rate p of the underlying OU
process and (ii) as the relaxation rate of the sum in Eq. (4),
of which each term performs, by Eq. (5), a random walk
with the same relaxation rate parameter, while invasions and
extinctions lead to removal and addition of terms. This gives
a self-consistency condition that we can evaluate to determine
Pinv-

To obtain an explicit expression for the relaxation rate
given by (ii), we first make an additional simplifying as-
sumption, later relaxed: with two parameters 0 < 1,C < 1,
the i.i.d. distribution of A;; for i # j is such that A;; = I with
probability C and A;; = 0 otherwise. We denote by A; the
subset of indices j in £ for which A;; = 1. We require that
C is sufficiently small such that |.A4;| follows an approximate
Poisson distribution.

We standardize the variance of the OU process driv-
ing harvesting resistance by introducing scaled variables
yi = ri/(varr)!/? and defining y = 7/(varr)'/?. Hence, pin, =
®(y), with & denoting the cumulative normal distribution.
By Eq. (5), the scaled harvesting resistances y; differ from
the population biomasses b; only by a constant factor. The
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relaxation rate of the sum in Eq. (4) therefore equals the

relaxation rate of
R; = Z Vjs (6)
JEA;
where the OU process followed by each y; from the time it
invades until it becomes extinct can be expressed through a
Langevin equation

dy (T
Y é(r ) (0(T) =) + /2T, %)

with  &;(T) denoting uncorrelated unit white noise
[cor(&(T), &;(T")) = 6;;6(T —T')]. The coefficient of
the noise term follows because the unconstrained OU process
has unit variance by construction. The noise is uncorrelated
due to our assumption of a sparse matrix A;; and weak
interspecific interactions. In addition, R; changes through
invasions and extinctions of species j. When a species j
invades, its scaled harvesting resistance y; follows a normal
distribution conditional to y; > 0, with density

1 0=
JamoG) T < 2 ) ®

Invasions of species j with A;; > 0 occur at a rate C,
adding the index j to .4; and a term y; to the sum defining R;.
Extinction of a species j € A; occurs when y; reaches zero.
The index j is then removed from .4; and the process y; from
R;.

We now evaluate the relaxation rate of R; using moment
equations, denoting expectation values by brackets (-). With
our assumption of negligible correlations, suppressing the
index i and abbreviating Z = |A|, we can write (R) = (Z)(y),
where the second factor is the expectation of y; for a randomly
chosen extant species. According to above considerations, (R)
changes over a small time interval 7 > 0 to

P™(y) =

(R(T +8T)) = <Zy, —8Tp(y; —y)+ 6TCy“”>
jeA

= (2)()) + [=p(Z)({y) = 7) + Cy™ 18T, (9)

where y™ denotes the mean associated with P™ (y). The sum
above is over the extant species at time 7. Extinctions of
species can be disregarded at lowest order, because shortly
before extinction their contribution to R is small. In the steady
state the time-dependent term in Eq. (9) vanishes:

—p((y) = IZ) + Cy™ = 0. (10)
Making use of Eq. (10), we similarly derive in the Ap-
pendix the second moment:

(R(THR(T +8T))

= (20 +(2)07) + Z)p()T — (AT (11)
Combining the moment equations, we first evaluate
varR = (R*) = (R)* = (2)(»”). (12)

Then we calculate the short-term autocorrelation function

R(T). R(T + 8T
cor[R(T), R(T + 6T)] = "R )V’ar; RELLR) B

and from this, considering that for an Ornstein Uhlenbeck pro-
cess cor[R(T), R(T + 38T)] = exp(—p|8T|), the relaxation
rate of R as

dcor[R(T), R(T + 8T)]

p=— lim
ST—0+ dsT
= _ 12 = _ 12
_ _Dp)y—07) ey — 7)) (14)
(Z)(»*) ?)

Equating p and p in Eq. (14) yields our self-consistency
condition. It simplifies to

y=0, andso pp = P() =1, (15)

our main result. Our model ecosystems self-organise to ex-
clude half of potential invaders.

Using the fact that dependence on (Z) and so C drops out of
Eq. (14), we can now address the case of general distributions
of the off-diagonal coefficients A;;. Assume first that A;; can
attain at random not one but two values other than zero. In
this case the dynamics of the sum in Eq. (4) through T is
given by a linear combination of the dynamics of two sums of
the form of Eq. (6). Since both have the same relaxation rate,
Eq. (14), so has Eq. (4). One easily extends this argument to
arbitrary discrete distributions for A;; and then to the limit of
continuous distributions.

Following [12], Sec. 14.6, we compute further properties
of the system steady state. Applying the classical mean first
passage time formula [22] to the process, Eq. (7), taking into
account that the harvesting resistance of invaders is distributed
as in Eq. (8), the mean time between invasion and extinction
of a species is p~! In(2). Since species invade the community
at a rate one by construction, the steady-state mean number of
species in the community is (S) = p~! In(2), so that

_In2) _ 0.693
D) sy

A previous attempt at deriving pi,, [12], Sec. 14.6 had incor-
rectly assumed p = (S)~! on heuristic grounds.

To compute the distribution of y in a steady-state com-
munity, we construct the steady-state Fokker-Planck equa-
tion corresponding to Eq. (7) fory = 0:

APy | 3*PG) | [2 ¥
+ +4/— -—= ). 17
o oy p 0y2 e (17
The addition of P™™(y) in the last term of Eq. (17) describes
invasion at rate one of new species with random harvesting

resistances. These are balanced by extinctions, described the
absorbing boundary conditions:

aP(y)
dy

(16)

0=

=p L (18)
y=0

P(0) =0,

The solution to this equation is the distribution of y
amongst extant species in the community, subject to Lotka-
Volterra competition and a continuous turnover of interacting
species through extinction and invasions. The distribution can
be expressed using a hypergeometric function and is shown in
Fig. 1. It has the moments (y) =227 ~1/21n(2)~! = 1.1511
and (y?) = 1 4+ In(4)~! = 1.7213, which can be used to eval-
uate other characteristics of the steady state. From Eq. (17.25)
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FIG. 1. The parameter-free distribution of standardized harvest-
ing resistance in the steady state of our model.

of Ref. [12], Sec. 14.6, for example, we obtain the approxi-
mate mean steady-state species richness

SEst
§) — 2BSt
) )

and from Eq. (17.26) the approximate standard deviation of
the fitness of new random invaders k,
0 o’

SD, = 2l Z
arm) = =

; 19)

(20)

Numerical simulations of the assembly model (detailed in
the Appendix) reveal the main effects limiting the accuracy of
our calculations. First, r; as given by Eq. (4) cannot exceed
s; = s, which constrains the degree to which the »; and y
can be described by an OU process or Egs. (17) and (18).
This becomes a problem when SD,, given by Eq. (20), is of
the magnitude of s. The smaller SD, is compared to s; the
better simulations agree with the analytic predictions (Fig. 2).
Second, the actual proportion of nonzero off-diagonal entries
in {A;j}i jee 1s smaller than C, possibly a reflection of the
constraint that {A;;}; jc¢ must permit coexistence [7,23]. This
effect disappears when SD, < s [Fig. 2(a)]. We therefore
extrapolated all our numerical results to SD, — 0 [Figs. 2(b)—
2(e)]. In this limit, we verified our main result, Eq. (15),
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for invasion probability to within 1.8% relative error; piny
is particularly robust to parameter changes in simulations
[Fig. 2(b)]. We further verified Eq. (16) for the relaxation
rate of invasion fitness to within 0.6% [Fig. 2(c)], Eq. (19)
for expected species richness (S) to within 1.0% [Fig. 2(d)],
and Eq. (20) for SD, itself to within 1.9% [Fig. 2(e)].

III. DISCUSSION AND CONCLUSIONS

Structure and dynamics of ecosystems result from pro-
cesses far from thermodynamic equilibrium, and fundamental
physical laws help little in illuminating laws of ecology. Yet,
just as quantum physics and relativity explain why some par-
ticles have spin 1/2, basic ecological principles imply that
pinv = 1/2. Potentially, this is not the only constant of nature
emerging from ecological principles. Other candidates are the
diet partitioning exponent of predators [24], which empiri-
cally appears narrowly constrained around 0.54(2), or the ratio
by which species richness declines from one level to the next,
observed to be close to 1/3 in both models [12,25] and data
[12,26].

Except for substantial work seeking universal exponents
linking individual body masses to physiological and eco-
logical rates [27,28], researchers do not generally consider
that universal ecological constants might exist. Most ecolog-
ical studies are designed to identify dependencies between
quantities rather than testing constancy under well defined
conditions. Nevertheless, there is striking empirical evidence
consistent with our prediction that 50% of attempted invasions
succeed.

Invasion ecology distinguishes two processes: “estab-
lishment,” the successful invasion of a local ecological
community by an introduced species, and ‘“‘spread,” the
subsequent successful invasion into a metacommunity. A
metaanalysis of the invasion success of vertebrates transported
between Europe and North America [20] found that the mean
establishment success for species introduced from Europe to
North America was 59.6 + 11.6% (standard error) and 52.4 +
11.9% in the other direction. For spread, the corresponding
figures were 65.0 = 16.5% and 54.4 + 17.4%, respectively. A
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FIG. 2. Numerical test of theory. Panels compare five predictions and assumptions of our theory with steady-state outcomes of 105

simulations. Simulation parameters were chosen as C = 1072, 107>%, 1073, and I such that Sgg; as given by Eq. (2) equals 300, 350, 400,
2000 [N.B.: u = I C, 02 = I*C(1 — C); see Appendix for details]. The abscissa in each graph represents the standard deviation SD, of the
fitness r of random invaders, as observed in simulations. Solid lines and 95% confidence ranges (gray) correspond to the quadratic regressions
used to extrapolate to SD, = 0 in the large-system limit. Horizontal dashed lines represent our analytic predictions. Panel (a) compares the
sampled proportion of nonzero off-diagonal entries in {A;;}; jee (“connectance”) with the assumed value C. (b) tests our prediction for invasion
probability, Eq. (15), (c) our prediction for the relaxation rate p, Eq. (16). Panel (d) compares observed species richness with that predicted by
Eq. (19), with Sgs; given by model parameters. (e) compares the observed standard deviation of invasion fitness, computed as in Eq. (4), with
that predicted by Eq. (20) (using the realized connectance for C rather than the model parameter).

013093-4



SELF-ORGANIZATION OF ECOSYSTEMS TO EXCLUDE ...

PHYSICAL REVIEW RESEARCH 6, 013093 (2024)

more detailed metaanalysis confirmed that for birds invasion
probability is 50 £ 2.6%, but reports 79 £ 1.7% for mammals
[21]. These probabilities are largely unchanged over a factor
10° in invaded land mass area [21]. One study [19] estimating
the invasion probability for 15 plant species into 0.5 x 2m
plots in an old field reports probabilities around 50% for most
species (for the equilibrium richness of ~13 species per plot,
we extract a median of 51% and an average of 56 &+ 5%).

Considering the higher value for mammals, we note that
our theory assumes that t = cor(4;;,Aj;;) is zero, while
interspecific resource competition can lead to v > 0 and
predator-prey interactions to t < 0. It is known that T > 0
decreases piny ([12], Sec. 17.3). Predator-prey interactions
between mammals might have the opposite effect, increasing
Piny-

Other studies, especially with plants, report lower invasion
probabilities. Only 10% of 27009 plant species introduced
into Australia have formed self-sustaining wild populations
[29]. However, this figure is dominated by 25 360 ornamental
gardening plants [29], for many of which we can assume that
the climate and soil of Australia are unsuitable, violating our
assumption that all s; in Eq. (4) are equal. Our theory must
break down when variability in s; (called environmental filter-
ing [30]) is comparable or larger in magnitude than variability
in the sum in Eq. (4), given by Eq. (20) (called biotic filtering
[31]). Including environmental filtering into the theory is an
important next step.

Regarding the solutions of Eq. (1), here we have obtained a
comprehensive description of the situation when Spoo1 >> Sgst,
deep inside the MA phase. The equilibrium species rich-
ness (S) predicted by Eq. (19) is by a factor (y?) smaller
than the richness Sgs; at the phase transition. This is be-
cause steady states in species turnover arise already when
the system is sufficiently sensitive that the perturbation in-
duced by a new invader leads, on average, to extinction of a
rare species, while S = Sgg1 corresponds to infinite sensitivity
[[12], Eq. (17.24)]. The precise nature of the transition from
Spool = 2SEs1 10 Spoot > 28gs1 remains unclear. Simulations
indicate the existence of an intermediate parameter range
where the community dynamically switches between a few
recurring configurations (Clementsian temporal turnover, [6]).
Whether this constitutes a distinct phase in the macroecologi-
cal limit Sgs; — o0 remains unclear.
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APPENDIX
1. Derivation of Eq. (11)

We derive Eq. (11), making first use of Eq. (10) and then
of the fact that varZ = (Z?) — (Z)? = (Z) on account of the
Poisson distribution of Z:

(R(T)R(T + 8T))

= < Z yi(Ty (T +8T) + Zyjcyinv8T>

jleA jeA

= <Z yibie =

- y)m> + () (Z)Cy™sT
j.le A

= < > i —pGu - y)ar]>

j.le A
J#l
+ <Zy.f[yj = p(j =33T ]> + ()(Z)Cy™sT
jeA
= (Z(Z — I = p(()* = ()7)8T]
+ (DL = p((YP) — (MYIT]
+ ONZ)p((y) —V)(Z)8T
= (Z)° () + (2)(°)
+ (2 = (Z)p()* — PST
+ (Z)p((y)* — ()T
= (2)’(0) + (Z2) (") — (ZD)p((y)* — MVST
+ (Z)p((y)* = (")ST
= (Z)° () + (2)(°) + (Z)p((0)y — (*)ST.

2. Computation of harvesting resistance

Without loss of generality, we show that Eq. (4) evaluates
to harvesting resistance r; = (dIn(b;)/ds;)~" if species i = 1
is extant, assuming the other S — 1 extant species have indices
2,...,8.

Let A and s be, respectively, the interaction matrix and the
vector of linear growth rates s; entering Eq. (3), but restricted
to the S extant species. Define M = A~!. We break both A and
M into four blocks to separate the entries for the species with
index 1 from all other species, assigned a mnemonic index “o0”

Air Ay
A=
<Aol Aoo)’
and, using a well-known block-wise inversion formula [32],
My My,
M=
(Mol Moo)
. My,
T\ A A M,

where M1; = (A11 — AAy)

(AD)

(A2)

—M1A A
A+ AL AaMIALAL ) (43)

Ao1)~L. Similarly, we break up

s= <S1>.

So
By Eq. (3) of the main text, b= A~!s = Ms is the vec-
tor of the equilibrium biomasses b; of the extant species. In

particular, by = My;s; + M,S,. Hence, by the definition of
harvesting resistance,

(A4)

_ Myisi + Mygs,

dIn b] B b1
rp=\—— (AS)
dSl db /dSl M11
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By Eq. (A2), M), = —M11A10A;01. Inserting this above, M|
cancels out and we obtain

ry =981 — A10A;01S0. (A6)
Defining b, = A_!s,, this becomes
ri = 51— Ajoby, (A7)

which is Eq. (4) of the main text for i = 1, with b/ defined as
prescribed below this equation.

Hence, we have shown that Eq. (4) of the main text
provides the value of harvesting resistance in line with its
definition. The fact that some entries of the abbreviation
b, = A, s, entering this equation may be negative does not
invalidate this derivation and does not imply that negative
population biomasses actually arise in our calculation.

3. General simulation method

With a direct simulation of the model, computation time
increases with system size approximately as SéSI: by a factor
SESI because of the vector-matrix operation in Eq. (3), by
a factor Sgs; because the time to reach equilibrium grows
approximately as Sgsr [33], and by another factor Sgs; be-
cause turning over an existing community of size O(Sgsy),
so to generate statistically independent data, requires O(Sgsr)
invasions.

To allow evaluation of the model for values of Sgs; up to
2000, we therefore computed the new equilibrium of Eq. (3)
after invasion of a species by directly solving the linear system
of equilibrium equations,

0=S,'— ZAijbj (i€g+),

jeET

(A8)

rather than through numerical integration of the model. When
one or more species in the solution of Eq. (A8) had negative
population biomass b;, we considered the one with lowest b;
extinct, removed it from &, and solved Eq. (A8) once more,
repeating until all populations biomasses were nonnegative.
In the simulation, we counted as iterations of the model both
cases where a randomly sampled species could invade and
where it could not.

The above procedure is plausible when only a single
species attains negative biomass after an invasion. When there
are several candidates for extinction, one might be concerned
that the order of species removal affects the outcome. We
note, however, that (i) in the model steady state only a single
species goes extinct after each successful invasion on average
and fluctuations around this mean are small; (ii) indirect in-
teractions between species are of similar magnitude as direct
interactions [12,34], implying that extinct species are not usu-
ally directly interacting with the added species or with each
other; (iii) when a species i goes extinct, |b;| is generally small
both before and after the species addition step (especially for
large Sgsp), implying that the effect of its removal on other
species in £1 remains small. Because of this, concerns about
the order of species removal have little bearing in practice.

To achieve the desired efficiency gain from directly solving
Eq. (A8), one must keep in mind that the direct numeri-
cal solution of this equation requires time of order O(SE:SI),

implying that this would not fundamentally improve the al-
gorithm compared to direct simulation. Instead, we therefore
kept track of both the matrix {4;;}; jc¢ and its inverse between
evaluations of Eq. (A8), using again the block-wise inversion
formula [32] to account for addition or removal of a single
species in £.

Specifically, if A’ is the matrix obtained from A by the
addition of row v and column u, i.e.,

r (A u
A= (VT 1), (A9)
then
Al — A+ AT Ta)(VTATY —c A
- —c"IyTA-! ¢!
(A10)
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FIG. 3. Test for consistency of invasion fitness (or suppression)
with Ornstein-Uhlenbeck process. Top: average of 100 periodograms
(circles) compared with a fitted Cauchy profile for a community with
C = 1072 and Sgg; = 2000, illustrating the good fit. Bottom: ratio
of averaged periodogram to Cauchy profile. In principle, the ratio
should be one at each frequency, with residual variance close to
1/100 = 0.01 (since periodograms have a coefficient of variation of
one). We find that there is only a small increase with frequency—over
the frequency range in which the Cauchy profile declines by a factor
180, the ratio increases by just 7%—and residual variance is 0.0097,
demonstrating the good fit.
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with ¢ =1 — vTA~"u, which allowed us to compute (A’)~!
from A~! and vice versa with O(Sgg;) operations. To en-
sure against loss of accuracy, we computed the inverse of
{Aij}i jee directly every 1000 iterations and when |c| < 1077
in a species removal step.

4. Simulation parameters
We evaluated the above assembly model for communities
with values of connectance C = 1072, 10-2, 1073 and inter-
action strength
I=[SgsiC (1 -0 (AL1)

for Sgs; = 300, 350, 400, ..., 2000, running the model over
200 x Sggj iterations, starting with a single species.

5. Ornstein-Uhlenbeck test and determination
of relaxation rate p

Of the quantities displayed in Fig. 2 of the main text, only
the relaxation rate p is difficult to extract from simulations. To
obtain p, we simulated the invasion fitness of 200 test species
(which never actually invade) throughout a simulation.

To avoid artifacts due to small numbers of interaction part-
ners or due to the fact that invasion fitness cannot exceed s; (=
1) in our model, which might arise for low C, we artificially
fixed the connectance of test species (i.e., the probability for
these species to be suppressed by a given resident species) at
40/SEst.

For each test species, we sampled the sum of the biomasses
b; of the suppressing resident species (hereafter called “sup-
pression”) after every Sgsy/10 iterations and discarded the first
100 samples as burn in. To circumvent the problem of deter-
mining the expected mean suppression, we paired the first 100
test species up with the other 100 test species and computed
time series for the difference of suppression of each pair, as
this difference has mean zero and the same autocorrelation
function as both components.

To these 100 time series, we then applied a cosine-bell
taper and computed their periodograms. We then averaged
the 100 periodograms to estimate the power spectrum. To the
lowest 200 nonzero frequencies f of this power spectrum we
obtained the least-square fit to a Cauchy profile (the Fourier
transform of the exponential autocovariance function of an
Ornstein-Uhlenbeck process),

a
(') + Qrf)*
with fitting parameters a, p’ > 0.

As a test for our assumption that invasion fitness (and so
suppression) follows an Ornstein-Uhlenbeck process, we veri-
fied that the Cauchy profile, Eq. (A12), described the observed
power spectra well (see example in Fig. 3). Remaining small
deviations from the Cauchy profile are likely attributable to
numerical limitations, including the finite duration of the sim-
ulated time series.

From the fitted p’ we computed p by taking account of the
subsampling of the time series and, dividing by the observed
value of pj,y, of the fact that 7' in the main text counts suc-
cessful invasions only.
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