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Abstract

Spatially proximate amino acid positions in a protein tend to coevolve, so a
protein’s 3D-structure leaves an echo of correlations in the evolutionary record.
Reverse engineering 3D-structures from such correlations is an open problem
in structural biology, pursued with increasing vigor as new protein sequences
continue to fill the data banks. Within this task lies a statistical stumbling
block, rooted in the following: correlation between two amino acid positions
can arise from firsthand interaction, but also be network-propagated via inter-
mediate positions; observed correlation is not enough to guarantee proximity.
The remedy, and the focus of this thesis, is to mathematically untangle the
crisscross of correlations and extract direct interactions, which enables a clean
depiction of coevolution among the positions.

Recently, analysts have used maximum-entropy modeling to recast this cause-
and-effect puzzle as parameter learning in a Potts model (a kind of Markov ran-
dom field). Unfortunately, a computationally expensive partition function puts
this out of reach of straightforward maximum-likelihood estimation. Mean-field
approximations have been used, but an arsenal of other approximate schemes
exists. In this work, we reimplement an existing contact-detection procedure
and replace its mean-field calculations with pseudolikelihood maximization. We
then feed both routines real protein data and highlight differences between their
respective outputs. Our new program seems to offer a systematic boost in de-
tection accuracy.
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1 Introduction

In biology, new and refined experimental techniques have brought on rapid
increase in data availability during the last few years. Such progress needs to
be accompanied by development of appropriate statistical tools to treat the
growing data sets. In several branches of systems biology, a key statistical
challenge is inferring interaction networks, i.e., determining which parts of a
system are communicating with which. An example is neural networks, which
is an active area of research (fundamental to the endeavor of understanding
the human brain) where studying the underlying web of functional connections
between neurons can shed light on their complex collective behavior (see e.g.
Schneidman et al. (2006)). Another example is the focus of this project: a
central topic in structural biology called protein structure prediction (PSP).
As we shall see, one can accurately estimate the 3D-structure of a protein by
identifying which amino acid positions in its chain have interacted over the
evolutionary time scale. PSP is a field indeed undergoing intense growth in the
amount of existing data (in the form of amino acid sequences). Also, nowadays
much of the experimental output is readily accessible through public data bases
such as Pfam (http://pfam.sanger.ac.uk, Punta et al. (2012)), which allows a
large number of researchers to confront the information quantities.

1.1 Correlation vs. causation

A recurring difficulty when dealing with interacting systems is distinguishing the
direct interactions, resulting from adjacent interplay between two units, from
interactions mediated via multi-step paths across other elements. Consider, for
instance, a system of three politicians A, B, and C, who can vote yes/no on some
propositions. Suppose A and B are in cahoots and tend to vote identically, and
suppose further that C has decided to always vote against B. Of course, C’s
votes will then tend to oppose A’s. A casual check of voting records might
entice someone to claim an explicit relationship between A and C, while the
actual effect can be carried entirely via the third-party participant B (A and C
may even be unaware of each other). Not to take mere correlation as evidence
of immediate interaction is, in addition to logically sound, often critical in real-
world situations.

Correlations are in general straightforward to compute from raw data, whereas
parameters describing the true causal ties are not. The framework of direct inter-
actions can be thought of as hidden beneath an observable weave of correlations,
and untwisting this is a task of inherent intricacy. In PSP, using mathematical
means to dispose of the network-mediated correlations can be necessary to get
optimal results (Morcos et al., 2011) and can yield improvements worth the
computational strain put on the analysis.

1.2 Potts model for extracting immediate interactions

The Potts model (Potts, 1952), an instance of what in statistics is referred to
as a Markov random field, provides a useful platform for tackling this chain-
effect issue. It is a many-state generalization of the well-known Ising model
(Ising, 1925), in which elements have a choice between only two states (as in the

1Ising models have the same form as Boltzmann machines in machine learning.



politician example). Classically, Ising and Potts models are used in statistical
physics as depictions of spin systems. Extended to general Markov random
fields, however, their use stretches across a variety of statistical topics, including
image processing (Cross and Jain, 1983; Geman and Geman, 1984), language
analysis (Manning and Schiitze, 1999), social network analysis (Kindermann
and Snell, 1980), and systems biology (Cocco et al., 2009; Lezon et al., 2006;
Weigt et al., 2009).

In a standard statistical-physics setting, (immediate) interaction parameters
of a Potts model would usually be given, and the aim would be to calculate corre-
lations (or other averages). In the context of the causation/correlation dilemma,
the interest is in reversing this procedure by solving the inverse Potts problem,
that is, to collect interaction parameters given correlations. Unfortunately, to do
this using basic tactics such as maximum-likelihood (ML) estimation is compu-
tationally feasible for tiny systems only (see e.g. Welsh (1993)). In applications,
one must in general rely on approximate, but in return tractable, ML schemes.

1.3 Potts model for protein structure prediction

Small spatial separation between amino acid positions in a protein encourages
co-occurrence of mutations. This stuffs the sequence record with correlations,
both direct and indirect ones, which tell of the protein’s structure (this is the
thrust of chapter 2). Lapedes et al. (1997) addressed the ambiguities of a
purely correlation-based route to protein sequence analysis and considered the
use of Potts parameters to instead portray direct interactions. Weigt et al.
(2009) successfully executed this, showcasing the accuracy increase achievable
by lifting indirect exchanges out of the account. Traditional algorithms typically
trusted covariation-like quantities and therefore in a fundamental way missed
out on this advantage. For a fuller recounting of PSP advances, methods, and
benefits, see for example the introductions and references of Jones et al. (2012)
and Balakrishnan et al. (2011).

As mentioned, for most real system sizes the inverse Potts problem cannot
be solved by means of everyday ML. Weigt et al. (2009) employed an iterative
algorithm called susceptibility propagation to approximately recover ML esti-
mates of the direct interaction parameters, but its long convergence times put
restrictions on the extensiveness of the analysis. Morcos et al. (2011) gave an
implementation using the simpler naive mean-field inversion (NMFI) technique,
which not only completed the parameter estimation 103-10% times faster than
susceptibility propagation (enabling a global analysis using much more of the
available protein data) but in fact even showed some better accuracies. Another
group, Balakrishnan et al. (2011), took an approach similar to what we do in
this thesis (see the next section).

Other ways of deducing direct interactions in PSP, not motivated from the
Potts model but somewhat similar in statistical manner, have also been sug-
gested. A fast method utilizing Bayesian networks was provided by Burger and
van Nimwegen (2010), and recently Jones et al. (2012) introduced a procedure
called PSICOV (Protein Sparse Inverse COVariance). While Potts/NMFT and
PSICOV both appear capable of outperforming the Bayesian network approach
(Morcos et al., 2011; Jones et al., 2012), their relative efficiency currently seems
open to investigation (this is not the focus of this thesis, though).



1.4 Motivation and contribution

The results of Morcos et al. (2011) suggest that NMFI wields much of the full
power of the Potts model in PSP (see also Marks et al. (2011)). Still, the going
knowledge of inverse Potts includes more sophisticated ways of approximate ML
than NMFT (we include a small survey in section 4.3), and whether or not these
can step up the structure detection capacity is, at present, not clear.

We recently published the superior performance of a candidate based on
pseudolikelihood mazimization (PLM) over NMFT (and over other standard
methods) on synthetic data in the Ising model (Aurell and Ekeberg, 2012).
In this project, we lift PLM out of the world of artificial data into the real
setting of PSP. Specifically, we build a completely PLM-based contact detector
and inspect whether or not its detections rival/beat those of of NMFI. This
hopefully can show what effect choice of Potts inverter has on PSP outputs,
and so help guide efforts in the field going forward.

Solving the inverse Potts problem is but one step in the PSP procedure,
surrounded by things such as data preprocessing and undersampling corrections.
To compare fairly PLM and NMFI, we emulate Morcos et al. (2011) in all such
secondary matters. Doing so also allows us to mimic the more biologically
motivated decisions required in this work (this manuscript concludes a thesis in
statistics, not biology). We essentially replicate the proceedings of their paper
(in small scale) except in the Potts inversion where we install PLM in place of
NMFI. The inner workings of PLM and NMFI differ quite a bit though, so we
also adapt the supporting parts to allow compatibility with PLM.

Pseudolikelihoods for PSP is not a novel thought. Balakrishnan et al. (2011)
have devised a version of this idea, but using a venue set up rather different from
that of Morcos et al. (2011), regarding for example what portions of the data
banks are used. Other measures of prediction accuracy were used, prohibiting
direct inspection of PLM’s performance in relation to NMFI. Hence, there is
room for a test in a common environment. Also, practical details of our PLM
realization differ fairly from those of Balakrishnan et al. (2011).

1.5 Outline

In chapter 2, we debut the ideas of PSP by explaining the biological hypotheses
linking protein 3D-structure to correlation among amino acid positions. The
chapter is intended for (biologically literate) nonbiologists.

In chapter 3, we draft a derivation of the Potts model and describe the
model’s statistical functioning. We also detail the ML approach as brought to
bear on the inverse Potts problem (this provides the starting point for approxi-
mate routines) and clear up why it is impractical for most system sizes. Later
in the chapter, we start the discussion on approximate ML, leaving the details
for chapter 4.

In chapter 4, we derive the NMFT algorithm as used by Morcos et al. (2011),
including steps separate from the Potts inversion. Alongside this derivation we
successively assemble our PLM procedure, making changes and tweaks to these
steps as we see fit. We also discuss the software created/used for the experiments
in chapter 5.

In chapter 5, we present results from experiments using both NMFI and
PLM and discuss how the materials put out are distinct.



In chapter 6, we recount briefly our findings, put in context their implica-
tions, and discuss where future priorities could land.



2 Protein structure prediction

In this chapter, we acquaint ourselves with proteins, domain families, and se-
quence alignments. We then formulate the biological supposition that redresses
PSP (or at least the contact detection part) as the problem of inferring couplings
in an interacting system. For a more thorough background on these topics, see
for example Mount (2004).

2.1 Proteins and folds

Proteins are one of the fundamental building
blocks of life and are present in nearly all bi-
ological processes. Chemically, they consist of
amino acids held together in long chains by pep-
tide bonds. Closely related to a protein’s function
is its fold, which refers to the 3D-structure into
which the chain curls. Figure 1 shows an example
of protein folding. Experimentally determining
the fold, using for example X-ray crystallography,
is rather costly and time-consuming. Retrieving
just the amino acid sequence (which guides the Figure 1: An hypotheti-
folding process) is easier, and sequences for more cal protein before and after
and more proteins are being put out. Interest is folding.

therefore high in estimating folds directly from

the sequence data.

2.2 Domain families

A domain is a protein section which tends to fold and, to some extent, evolve as
a unit, i.e., separately from other parts of the chain. One domain can be found
in many species. Domains in a domain family have common evolutionary origin
and usually display similar properties. For example, a domain found in humans
might have an analogous (or homologous) version (from the same family) in
a rat (or even in yeast), with only modest changes in sequence, fold, and the
function it facilitates.

Arrays with many sequences from the same family can today be conveniently
obtained (e.g. from Pfam). The fold is expected similar across a family; changes
in function and fold tend to be more moderate than those in sequence. As
explained shortly, general claims about the family fold can be made by studying
where sequence differences have manifested themselves during evolution.

2.3 Sequence alignments

When looking to quantify the variations within a collection of sequences, an
initial step is putting the data into a format where they can be compared.
This can be achieved by ’aligning’ the sequences, done (roughly speaking) by
matching up chain positions where the amino acids are often identical. This is a
complicated problem with some rather successful heuristic solution techniques.
The evolutionary events responsible for the diversity within a family include
removal and insertion of amino acids, so satisfactory alignment requires the



adding of empty spaces, or gaps, into the sequences. The resulting data set,
called a multiple sequence alignment (MSA), can look like in figure 223. Note
that a letter tends to appear numerous times in a column.

QBE%40 BOYIN ----------- MPREDRATWKSN YFLEITIQLLDDYPKCFIVGADNYGSK TRMSLRGK -AVY LMGK MRKAIRG N--PAL
RLBO:HUMHN ——————————— MPREDRATWKSNYFLEIIQLLDDYPKCFIVGADNYGEK TRMSLRGK -AYY LMGK MRKAIRG N--PAL
RLAO0 MOUSE ----------- MPREDRATWKSNYFLEIIQLLDDYPKCFIVGADNVGSK TRMSLRGK -AVYLMGK MEKAIRG N--PAL

RLEO_RHT ——————————— MPREDRATWKSNYFLEITIQLLDDYPKCFIVGADNYGSK TRMSLRGK -AYY LMGK MRKAIRG N--PAL
BLA0 CHICK ----------- MPREDRATWKSN YFMEIIQLLDDYPKCFYYGADNYGEEK TRMSLRGK -AYY LMGK MRKAIRG N--PAL
RLAO0 RANSY ----------- MPREDRATWKSNYFLEIIQLLDDYPKCFIVGADNVGSK TRMSLRGK -AVYLMGK MEKAIRG N--SAL

Q7ZUG3:BRARE ——————————— MPREDRATWKSNYFLEITIQLLDDYPKCFIVGADNYGSK TRLSLRGK-AYYLMGK MRKAIRG N--PAL
RLA0 ICTPU ----------- MPREDRATWKSNYFLEIIQLLNDYPKCFIVGADNYGEK TRLSLRGK-AIVLMGK MRKAIRG N--PAL
RLBO:DROME ——————————— MYRENKAAWKAQ YFIKVVELFDEFPKCFIVGADNVGSK TRTSLRGL-AVVLMGE MEKATRG N--PQL
RLA0 DICDI ----------- M8GAG-SKRKKLFIEEATKLFTT¥DKMIVAEADFYGS S TRESIRGI-GAY LMGKKTMIRKVIRDLADSK--PELD

QSJLDU:DICDI ——————————— MSGAG-SKREKNVFIEEATKLFTTYDKMIVAEADFYGS S TRESIRGI-GAVLMGEKTMIRKVIRDLADSK--PELD
BLA0 PLAFE ----------- MAKLSKQQKKQMYIEKLS SLIQOMSKILIVHYDNYGSN BSVRKSLRGK—BIILMGK IRTHLKKNLIAV——PQI
BLA0 SULAC ----- MIGLAVITT KKIAKWKVDEYAELT EKLKTHKTITIANTEGFP ADKLHE TREKLRGK -ADIKY LFNIALENAG-----
RLA0 SULTO ----MRIMAVITQERKIAKWKIEEVKELEQKLREYHTIITANIEGFPADKLHDIRKKMRGM-AETKY! FGIARKNAG-----
RLBO:SULSO ----MKRLALALKQREKVASWKLE EYKELT FKIARKNAG-----

IKNSNTILIGNLEGFP ADKLHETRKKLRGK - ATIKY

Figure 2: An example MSA. Rows represent sequences and columns represent
amino acid positions, also referred to as sites or residues. Dashes indicate gaps.
The colors visualize the conservation of amino acids in each column.

2.4 Structure recovery in domain families

Assembling sequences in this manner allows one to more easily probe for statisti-
cal dependencies in the data. To predict a family’s fold, the following hypothesis
is used: a statistical tie between two columns in the MSA is likely evidence of
spatial proximity between the corresponding positions. Figure 3 illustrates a
simple example; amino acid S in one place always appears paired with an H in
another, and similar for F and W. These two positions seem to have escorted
each other through the space of possible sequences as evolution progressed. Since
they are not particularly close in the sequence order, we can suspect the chain
folds in on itself to form a contact, enabling the interaction.

For many domain families, Pfam supplies sequences from thousands of mem-
bers, so MSAs like the ones in in figures 2 and 3 can have thousands of rows,
and the general idea demonstrated in figure 3 can be taken to a larger scale. By
identifying a whole web of these correlations, many possible contacts can be sug-
gested, providing the first step toward building an estimate of the 3D-structure
of the family (Gobel et al., 1994). This is where sorting out network-induced
correlations becomes necessary, to pinpoint pairs of directly interacting positions
only and not, for example, pairs of distant positions which just happen to have
many intermediate contacts between them.

2Source: Wikipedia, accessed on 15/2-2012. Document distributed under GNU Free Doc-
umentation License Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008
Free Software Foundation, Inc. Original uploader was Miguel Andrade.

3 Amino acids are often represented by letters, for instance T=threonine, K=lysine, and
M=methionine.
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Figure 3: On the left: A made-up MSA which hints at geometrical proxim-
ity between two positions. On the right: A hypothesized corresponding chain
conformation.

3 The Potts model

We start this chapter by motivating and formalizing the Potts model in the
context of PSP. We then show how to learn the direct interaction parameters in
typical ML fashion. As we have mentioned several times now, it is fundamen-
tal to this thesis that such straightforward parameter retrieval is out of reach
computationally for basically all domain lengths. We straighten out why this is
and lead into a segment setting up the topic of approximate ML schemes.

3.1 Foundation and definition

Let o = (01,09, -+ ,0n) represent the amino acid sequence of a domain with
length N. For notational convenience, we replace the letters that commonly
represent amino acids with consecutive integers starting at one. Hence, each
o; takes on values in {1,2,...,q}. ¢ is taken as 21: one state for each of the
20 naturally occurring amino acids and one additional state to represent gaps.
Thus, an MSA with B aligned sequences from a domain family can be written
as an integer array,

I CO RS ()

o % N

0’ O‘ ... 0‘
e, =1t 2 N

M R 2

with one row per sequence and one column per chain position. We will also
refer to the sequences as samples and to the positions as nodes (thought of as
parts of an interaction graph). The objective is to identify direct statistical
couplings among columns in this array, exposing positions which are in each
other’s midst. Given an MSA, the empirical individual and pairwise frequencies



can be calculated as?

B
) = > o =H,
b=1
B
fi(k1) = %ZI[JEb):k]I[JJ(b):l]. (1)
b=1

I is an indicator function giving one if the statement in the brackets is true and
zero otherwise. f;(k) becomes the fraction of sequences for which position i has
amino acid k. Similarly, f;;(k,[) becomes the fraction of sequences in which the
position pair (7,) has the amino acid combo (k,l). Correlations can now be
formed as

cij(k, 1) = £ij (k1) — £:(k)f;(1). (2)

A maximum-entropy model

The Potts model is obtained by seeking a probabilistic model P(o) which can
reproduce the empirically observed f;(k) and f;;(k, ) but otherwise is as general
as possible. The frequency demands on P(o) can be formulated as

Ploi=k) = Y Plo)="fi(k),

o=k

Ploi=k,o;=1) = > P(o)="f;(k1), (3)

o‘j:I

o;=k
and, in keeping with the maximum-entropy principle, the desired most-general
model is had by maximizing the entropy S = — > P(o)inP (o) while adhering
to these. Maximization of S under (3) can be carried out through the intro-
duction of Lagrange multipliers, giving, after some straightforward calculations,
the Potts distribution

1 N N-1 N
Po) = — eXP Zhi(oi) + Z Z Jij(oi,05) | » (4)
i=1

i=1 j=i+1

in which multipliers remain as parameters to be fitted to data. This P(o), in an
information-theory sense, makes minimal assumption about the world while still
capable of staying true to our observed averages. Z is a normalizing constant
making sure the total probability is one by summing over all possible states o,

N N—-1 N
7 = Zexp Zhi(oi) + Z Z Jij(O'Z‘,O']‘) . (5)
o =1 i=1 j=i+1

4Unless stated otherwise, node indexes are assumed to take on values 1 < i < N, pair
indexes run through 1 <i < j < N, and states take on 1 < k,l < q.



In the Potts model (4), each node i has associated with it a vector of fields

h; = (hi1,hi2, -+ ,hig)? and each pair (i,j) a matrix of couplings
Jijir Jigiz o0 Jijg
Jijor Jijoa o0 Jijag
Jij = ; : ;
Jijr Jija2 o Jijag

Note that the probability of a sequence o is calculated by picking out the entries
from h; and J;; corresponding to the amino acids in positions 7 and j.

A Potts model in statistical physics is usually not this general. The cou-
pling matrices are sometimes reduced as much as J;; = JI, requiring just one
coupling parameter for the entire system. Still, we will by ’Potts model’ mean

(4)-

3.2 Model properties
Interpreting the fields and couplings

The fields and couplings describe inclinations of positions to carry certain amino
acids. Specifically, a large h;(k) is a bias of position i toward preferring amino
acid k, and a large J;;(k, ) translates into a desire for positions i and j to jointly
carry amino acids k and [. We can think of h; (k) and J;;(k, 1) as the immediate-
effect quantities we have talked about, contrasted to the observables f;(k) and
c;j(k,1), which include network propagation of effects. Sensibly then, the fields
and couplings, not the correlations, ought to be used to sharply report the in-
teractive characteristics of the system. Hence, the whole game here is retrieving
the set {h,J} from {a®}2 | i.e., reverse designing the model parameters from
observations of the system (the inverse Potts problem).

The number of free parameters

The pairs (7, j) and (j,) are considered the same, and no pairs of the type (i, )
are included. Thus, the number of pairs equals the number of ways one can
choose two elements from a collection of N without replacement or ordering:
N(N —-1)/2.

Because there are N nodes each with a field vector of length ¢ and N(N—1)/2
node pairs each with a coupling matrix of size g2, the total number of param-
eters is Nq + Wq? But, it turns out that the model as it stands is over-
parameterized, in the sense that distinct parameter sets can describe the same
probability distribution. As a consequence, the problem of retrieving {h,J}
from a piece of data (an MSA) has multiple solutions. This can be bother-
some when trying to get a learning algorithm to converge, and it also makes
reproducing results harder. One would thus ideally dispose of the unneeded
variables before attempting inference. Indeed, superfluous quantities are analo-
gously present among the frequencies (1). Note for instance that f;(g) is implied
given £;(1),£;(2),...,f;(¢ — 1) since > .{_, f;(k) = 1. When eliminating all re-
dundancies from the derivation, the number of free parameters in the model
falls out as N(¢g—1) + W(q —1)% (Weigt et al., 2009; Morcos et al., 2011).
A way to account for this dimensional excess is to impose constraints on the



parameters, for example by setting
Jij(q,1) = Jij(k,q) = hi(q) =0, (6)

for all 4, j, k, and [ (as was done by Morcos et al. (2011)), which would mean
measuring all biases and interactions with the last state as a reference level. This
would make the solution to the inverse Potts problem unique. We sometimes
fix parameters like this and sometimes use the full representation, for reasons
explained in section 4.4.

Relation to the Ising model

As touched on in the introduction, the Potts model reduces to the Ising model
when ¢ = 2. Using the full parameterization, h; and J;; in the ¢ = 2 case would
be of dimensions 2 and 2 x 2 respectively. The typical Ising model formulation
grants each node just one field parameter h; and each node pair just one cou-
pling parameter J;;, a consequence of the above discussed need to represent the
distribution uniquely. The parameter constraints commonly used in the Ising
model is not (6) (although some of the literature uses it), but rather

q q

D Jij(ks) =D Ji(s,) => hi(s) =0, (7)

s=1 s=1
for all 4, j, k, and [, i.e., the sum across any column or row in any coupling ma-
trix, and the sum of any field vector, should be zero. By using these constraints
and letting the variables o; take on values —1 and 1 instead of 1 and 2, one gets
the Ising distribution presented in the classical form

1 N N—-1 N
P(O’) = Eexp Zhiai + Z Z JijO'iO'j . (8)
=1

i=1 j=i+1

Sometimes an inverse temperature is also included, in which case the exponential
can read ﬂZi\Ll hio; + ﬂZiV;ll Z;\;Hl Jijoio; where B = % (see e.g. Aurell
and Ekeberg (2012)).

So far, most research on the inverse Potts problem has been carried out for
the ¢ = 2 special case, termed the inverse Ising problem. However, reasonings
for ¢ = 2 can often carry over in a direct manner to ¢ > 2. Formulas and
derivations present neater when ¢ = 2, so, for readability, we will take some
later discussions in the setting of (8).

An accurate depiction of domain families?

Let us reconnect to PSP. When adopting a Potts model in this way, one is
assuming that the sequences from a domain family are independent samples
drawn at random, according to (4), from the ¢"-dimensional space of all possible
sequences. This model choice can of course be questioned.

First: why embed only two-node interplay in the model? Well, in correlated
systems in nature, pairwise behavior often accounts for much, if not most, of
the activity. Also, estimating something like third-order interaction variables
would require dramatically larger data sets.

10



Second: are the sequences/samples really independent? This seems a stretch,
especially when noting that many MSAs in Pfam have an unproportional amount
of sequences nearly or exactly identical. Such critique is certainly justified, and
Morcos et al. (2011) combated the issue by reweighting, a procedure we describe
in section 4.5.

3.3 The inverse Potts problem
Maximum-likelihood estimation

Given a set of independent samples {o®}Z | from (4), the ordinary statisti-
cal approach to inferring {h,J} would be to let the estimates maximize the
likelihood, often by minimizing the (rescaled) negative log-likelihood function

B
1
_ (®)
nll = bgl InP(c'”). (9)

For the Potts model (4), this becomes

-1 N
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As indicated by the underbraces, the fraction of times the entries h;(k) and
Jij(k,1) are picked across the B-sums can be represented by the frequencies,
giving

N q
nll(h,J) ZZfi(k)h k) —

The normalization constant Z of course depends on all the parameters, Z =
Z(h,J). The ML estimates are obtained as

N-1

N q
SN £k DIk, ). (10)

i=1 j=i+1 k=1 1[=1

+

(WML gMIy — aﬁlﬁn{nmh, I} (11)

The negative log-likelihood objective nil is differentiable, so minimizing it means
looking for a stationary point, i.e., a point at which 9y, (xynll = 0 and 95, . ynll =
0. Hence, ML estimates will satisfy
6hi(k)an - fl(k) = O,
8Jij(k7l)an —f;(k, 1) = 0. (12)
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By looking at the structure of Z (see (5)) one can note that

On,(InZ = Y _Ilo; = k|P(o) = P(o; = k),
6Jij(k}l)an = ZI[Uz‘ZkI]I[O’j ZZ]P(U) ZP(O'i :k',O'j Zl), (13)
so what the equations (12) actually say is
Ploi=k) = fi(k),
P(O’i = k,Uj = l) = fij(k,l), (14)

i.e., that the ML estimates should yield marginal probabilities that match the
empirically observed frequencies.

Sufficient statistics

Z is a sum over all states &, so its evaluation is independent of the set {a®}Z_|.
Hence, the data enter into equations (12) only through f;(k) and f;;(k,1). Con-
sequently, the ML estimates can actually be acquired from the frequencies alone,
i.e., they do not demand the full configurations {a(b)}le. This can be moti-
vated by familiar statistical theory as follows. By using indicator functions, (4)
can alternatively be written

P(o) =

% exp | Y hi(k)I[o; = k] +

i=1 k=1 i=1 j=i+1k=11=1
(15)

This distribution is a member of the exponential family, and the functions multi-
plying the parameters in the exponential are sufficient statistics (see e.g. Wain-
wright and Jordan (2008)). This means that no information (about the model
parameters) in the full data set exists which, in theory, cannot also be extracted
from the averages (I[o; = k]) and (I[o; = k|I[o; =l]). These are indeed f;(k)
and f;;(k,1). The frequencies being sufficient for learning is quite intuitive; they
were the starting point for the maximum-entropy derivation in the first place. It
seems sensible that the quantities that instigated the model are able to specify
it completely. We remark again that the model must be reduced from its over-
parameterized status (e.g. by imposing (6) or (7)) for the sufficient statistics to
generate a unique set of ML estimates.

The intractability of Z

As we’ve hinted, the ML route to finding estimates runs into a major barrier
in practical situations. So, what is it that makes solving the equations (12) so
difficult? The answer is a common one in statistical inference: the normalization
constant Z is incredibly expensive computationally. It demands a summation
over all possible states o, and the number of states increases exponentially with
the system size N making this a daunting task even for relatively small systems
(in the Ising case, N = 20 is sometimes mentioned as a limit). Methods in this
business therefore generally must, in one way or another, sidestep an exhaustive
evaluation of Z.
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Graphical model selection and inverse Potts

The hunt for such methods has intensified over the last decade, and by now many
ways to efficiently approximate Z have been put forth. It can be difficult to get
a clear overview of the existing toolkit though, partly because this research lives
in the cross section of several subjects: statistics, statistical physics and machine
learning. Even though the core problem (parameter selection in distributions of
the form (4)) is the same, notions differ slightly in what the input and output
of an algorithm should be and what data assumptions can be made. Also, as is
natural, terminology and notation is not consistent across the fields.

In the statistics community, the problem is commonly studied in relation
to graphical model selection (see e.g. Ravikumar et al. (2010) and Jalali et
al. (2011) who study PLM for ¢ = 2 and g > 2 respectively). Efforts there
put main theoretical focus on rebuilding a system’s underlying graph, in which
an edge is said to exist between nodes ¢ and j if one or more of the elements
in J;; are nonzero (this definition depends on what parameter constraints are
used, though). The main concern then is whether each J;;(k,[) is zero or not;
the actual parameter values are secondary. Yet, these methods generally do
construct parameter estimates and can thus be used for this task as well. It is
normally assumed here that the full set {o(®}2_| can be accessed at will.

Inverse Ising/Potts is more of a statistical-physics term. Although not
strictly defined, it routinely refers to reacquiring {h,J} using the frequencies
(1) only. Thus, access to the full configurations {o(®)}2_| is often not presumed
here. Remember that the Potts model was credited as the least restricting dis-
tribution choice when given f;(k) and f;;(k, 1), so there is some sense in feeding
only these to the inverse methods.

Along those lines, one could ask: since the frequencies are ’sufficient’, why
would there ever be a point in hoarding the full sample collection? The answer
is: even though theoretically no extra statistical ’capital’ is sustained by doing
S0, it can simplify things computationally and allow otherwise out-of-reach styles
of approximation.

The differences between strict inverse Potts and graphical model selection are
characterized by NMFI and PLM. The former is typically backed by statistical-
physics arguments and takes as input f;(k) and f;;(k, 1), whereas the latter is
more of a pure statistics concept (usually, Besag (1975) is credited) and uses all
the data.
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4 Method development

In this chapter, we trace the crucial steps of the NMFI usage by Morcos et al.
(2011) and in parallel explain our chosen corresponding actions for PLM. At
the end of the chapter, we state the full versions of both algorithms and inform
on how we engage them numerically.

In some segments with technical content, we revert to the Ising setting (8).
As is standard in the literature on inverse Ising, we then express the relevant
quantities as means, or magnetizations, m; = (o;) and correlations ¢;; = (0;0,)—
m;m; (instead of frequencies) and use spin variables o; = +1.

Section 4.3 contains a quick survey of some contenders for inverse Potts other
than NMFT and PLM. That section is not essential and can be skipped at will.

4.1 Naive mean-field inversion

We now lay out the NMFI execution in the Ising case and follow up with a
generalization to the Potts model. NMFI rests on the approximate supposition
that contributions to m; come through the averages of the other spins m;, j # i
(via the interaction strengths J;;), and from the node’s own local field h;. This
casts a set of coupled equations as

LS s T n (_1>e—hi_2j#i J'ijmj’ (16)

m; =~ ehi+z#i Jijm; + efhrzj# Jijmy
or, rearranged,
tanh™(m;) ~ h; + Z Jijm;. (17)
J#i
Differentiation with respect to m;, j # ¢, gives a convenient expression for the
couplings (see e.g. Roudi et al. (2009)):

JIMEL = —(C™h)y, (18)

where C is the matrix with ¢;; in position (7,7). The generalization to ¢ > 2
turns out to be direct. Using the constraints (6), ¢;; from the ¢ = 2 case gets
replaced by a (¢ — 1) x (¢ — 1) submatrix built from c;;(k,) (as defined by (2))
for all k and [ except the last state ¢. This assembles a N(¢ — 1) x N(¢ — 1)
correlation matrix C, from which the couplings are calculated as

St =—(C Y, (19)

where a = (¢—1)(i—1)+kand b= (¢—1)(j —1)+1I. In (19), k and ! run from
1 to ¢ — 1 (under (6), the rest of the parameters are zero). For a derivation of
NMEFT in the Potts setting, see Morcos et al. (2011).

4.2 Pseudolikelihood maximization

We now derive our version of PLM. The general principle is to boot out the
proper objective (10), which contains the problematic Z, and fabricate a re-
duced quasiversion which avoids a full-space normalization. Several realiza-
tions of this idea are possible, but we use the (somewhat standard) one where
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each sample o(® contributes to the likelihood not through its full probabil-
ity (as in (9)), but through the probability of one o, conditioned on all the

other variables. Thus, we consider P(o, = Ufnb)|0'\r = ang)), where o\, =

(01, yOr—1,0p041,"** ,O0N), instead of P(o = O'(b)). We can derive the expres-
sion for P(o, = o o, = a'il;)) using the formula for conditional probabilities,

P(A|B) = 2A0B) g

P(B)
b
P(o, = oo\, = o) =
P(o, = o, O\r = U@) P(o, = o, O\r = ‘Tibr)) (20)
- b - DN
P(o\, = aiT)) Y1 Plor =10\ = agr))

Both the numerator and the terms in the denominator are probabilities of full
states o, and we can therefore plug in (4). But, what distinguishes parts of (20)
are only the varying values for o,., so all parts of (4) not concerning the state of
node r will be identical and cancel out, including Z. What remains is

i

N
exp hr(oib)) + > Jri(aﬁb),a(b))
i=1

P(o, = Uﬁb)|0'\7. = a‘@) = 7

S ®)
Soiexp [ he(l) + 0 Il 077)

=
where, for notational convenience, we take J,.;(, k) to mean J;.(k, 1) when i < r.
This quantity contains no nasty normalization. In a sense, normalization s still
going on though; the denominator can be seen as our 'new Z’, particular to the
node r. The dependent variable o, takes on just g states (contrasted to o with
its ¢V states), so this normalization is compatible with large N. Given an MSA,
we can maximize the conditional likelihood by minimizing

B

1
frlbr 30) = =5 > in [P, ap(or = ooy = o)) (22)
b=1

Note that this only depends on h, and J,, = {J;, };%,, that is, on the parameters
featuring node . We form our final objective function by adding f,. for all nodes:

N N B
) = 3 e, 30) = S =5 3 tn [Py (o = oVl = o)
r=1 T b=1

=1
(23)
The shortening npll stands for negative pseudo-log-likelihood. We define our
PLM estimates as

{nPEM JPEMY — aromin{npll(h,J)}. (24)
{h,J}
It is important to underline that minimizers of npll generally do not minimize
nll; the replacement of likelihood with pseudolikelihood does alter the outcome.
This is the fee we pay to access nontrivial N. PLM is, however, an experimen-
tally well-backed method whose solution trajectories often run remarkably close
to those of conventional ML.
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Parallel execution of PLM

Another implementation of PLM is to minimize each f, separately, which saves
one of having to forge a big substitute of nll as in (23). This approach hands
out two, generally different, estimates of each J;;: one when o; is considered
the dependent variable and one when o; is. Symmetry must then be imposed
heuristically, for example by taking averages. Although slightly cruder, this
type of PLM allows trivial parallelization of the numerical work, since it splits
the original problem into N subproblems which can be solved independently.
Hofling and Tibshirani (2009) explored the behavior of the two versions and
found that the one-big-optimization variant (which we use) was preferable to
the N-split one in terms of accuracy, although both versions performed well.

Consistency

A qualitative difference between PLM and many other estimation schemes is
the consistent nature of its estimates. Consistency means that the method is
sure to conjure the true parameters as B — oo, if the samples are in fact drawn
(independently) from the distribution in question. It is a general characteristic
of pseudolikelihood estimates, but we settle for a demonstration for (8), the Ising
model (recall that o; = +1 in that formulation). The conditional probability
(21) then reads

_ ENONE 1
P, 3.4(0r = ol )Ia\r =o0,)= OIS SO (25)

We take for now {h, J} as the true parameters of the system. As B grows larger,
the empirical mean of (22) will eventually emerge as a true average, evaluated
as (A) = >, APm.5y(o). So, f, can be expressed as

Q

fr(hy, J7) ( —In (P a7y (0rloy,)) )

Z In (1 + e 2ot s, Jl{ra"'}) Pgy(o)

o

(26)

with equality expected in the limit B — oo. In this limit, the derivatives of f,
become

Ofr
aJ!,

—2050,

(h;aJ;) = 2o+ 2, J,0l] n 1P{h,J} (o), (27)

o

for s = 1,..., N (and similarly for the field derivative). At the true parameters
{hr,J;}, the summands can be adjusted as follows:
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—2050,
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= 1 Z —2050r eigl Pioit z‘gl j=;+1 Ji3 71 _
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N N-—1 N
2 hioit 30 30 Jijoio;

1 6_0-7‘[h7‘+2i#1v Jin]ei=1 i=1 j=it1
= - E USUT =
Z{ha J} P % (607'[h7'+zi;ér J“"’i] _|_ 670'7'[h'r'+zi¢r Jirffi])
Digr hicit> o Jijoio;

e i, JFT

-y
~ Z{h,J} - 7sr cosh(ov[he + 32,4, Jiroi])

(28)

The quotients in the last sum are independent of whether o, is 1 or —1 (cosh
is an even function). Each state has exactly one other state identical except
for an antialigned o,., and the contributions from such companions are equal in
size but opposite in sign, so the sum above vanishes. Hence, %(hr,.]r) =0.
Calculations are analogous for the variation with respect to h:.r This means
fr has a stationary point at the true parameters. Appropriate definiteness of
this point can be checked to ensure a minimum. Assuming that we can locate
this point, our PLM procedure is exact in the limit of large sample size. Note
also that the cancellation occurs within each separate f,, so the consistency
argument is valid also for the parallel PLM variant described earlier.

We remark that consistency may be of limited relevance in our setting, since
MSAs are, at best, only approximately generated from (4). It is nevertheless an
appealing theoretical property.

4.3 Other methods

We now describe some other current Potts inversion techniques. Everything
is handled in the Ising regime here, but in principle all methods should be
extendable to ¢ > 2. The list presented in this section is not exhaustive.

Boltzmann learning

Boltzmann learning (Ackley et al., 1985) is a popular method, the idea be-
hind which is simple: {m, C} can be generated from {h,J} using Monte Carlo
sampling, so just tune the fields and couplings until the corresponding means
and correlations that come out match the empirical ones (in accordance with
equations (14)). The update rules can look like

0Ji; = n({0i05)data — (T50;) {n,3})s
Shi = n({oi)data — (Ti) (n,3}) (29)

for some constant or function 7. This incremental update scheme is guaranteed
to converge to the ML estimates given sufficient time. But, the Monte Carlo
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sampling sessions needed to generate (0;0;)(n,3} and (0;)¢n 3} can be tedious,
and a simple set-up of this method is unrealistic to apply to most relevant
system sizes. Yet, it can sometimes be worth paying the time-cost up front. For
instance, when testing approximate ML routines on real data sets and one is
need of ’true’ parameters to compare with, Boltzmann estimates can serve as
such. Also, cleverly accelerated variants of this procedure make up an interesting
class of Potts inverters (see e.g. Broderick et al. (2007)).

Thouless-Anderson-Palmer inversion

It is straightforward to include the next order of the mean-field approximation
(17), which, informally speaking, adds the two-step effect that spin i exhibits
on itself via another spin and back (Roudi et al., 2009),

tanh™" (ms) = hi + > Jymj — Y J5mi(1—m3). (30)
J#i J#i
One can again differentiate with respect to m;, which gives equations solvable
for the Thouless-Anderson-Palmer (TAP) (Thouless et al., 1977) inversion es-
timates,
J;J;AP = —(Cil)ij — 2(J£AP)2mimj. (31)
JEAP coincides with JYMFT for zero means, but yields a better estimate in
general. Morcos et al. (2011) tried the Potts version of the TAP expansion
(NMFI and TAP are in a sense expansions in small couplings) for PSP, but
found no significant improvement over NMFI.

Sessak-Monasson expansion

Sessak and Monasson (2009) provided a systematic technique to expand the
likelihood in small correlations. A resulting expression for the couplings up to
a certain order was included, which can be written

JSM _ gNMFEL 4 gIP Cij 32
A (T e 32

is the independent-pair approximation

where JinP

grp _ L [ mi)(3 4 my) + i) (L= mi) (1 = my) +cij)
YA (= ma) (X my) = eig) (L4 ma) (1 —my) — cij)

(33)

Roudi et al. (2009) showed that this expansion outperforms other state-of-the-
art methods (particularly in hybrid with TAP) on artificial neural data. Sessak
and Monasson (2009) took the order higher at zero magnetization, giving
JEM{m 0} _ JSM
i i 1 {(1 + ¢ij — cik — ¢e) (1 — ¢ij — ek + ¢ji) (L + ¢ij + e + Cjk)]
(1 = cij — cin + cji) (1 = cij + cir — cjr) (1 — ¢ij — cir + Cj)

k=1
k#i,j
_ Z JIP 4 Cij — CikCjk _ Cij (34)
ij — 2 2 _ 2 P _ 2 |-
1 Cij — Cik cjk—i—2c”cjkc;ﬂ 1 Cij
k¢17
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More methods

The susceptibility-propagation method (an iterative message-passing procedure,
Mezard and Mora (2009)) used by Weigt et al. (2009) works best for treelike
interaction networks, i.e., when the underlying graph is not loopy.

One of the most interesting candidates at present is the cluster expansion of
Cocco and Monasson (2011a—2011b). A cluster is a node subset of the system,
such as {i,7,k} = {2,7,9}. This method, loosely speaking, accepts or casts
aside a cluster’s contribution to the {h,J}-estimates depending on whether or
not that cluster’s entropy contribution exceeds some threshold ©.

Other relevant methods are Bethe reconstruction (Nguyen and Berg, 2012;
Ricci-Tersenghi, 2011), contrastive divergence (Carreira-Perpinan and Hinton,
2005), which is closely tied to pseudolikelihood (Hyvarinen, 2007), and minimum
probability flow (Sohl-Dickstein et al., 2011).

4.4 Regularization

When learning from limited data, true model properties and data weaknesses
can often yield deceptively similar outputs. Consequently, there is always a
risk that a seemingly relevant find is just a display of undersampling. This
issue, termed overfitting in statistics, tends to plague inverse problems on large
systems. Regularization is a term commonly used for add-on techniques aimed
at reducing this risk. In PSP, current data sets are certainly dirty enough to
earn the attention of such enhancement methods.

Pseudocount for NMFI

Morcos et al. (2011) used a counter tactic built on pretend sightings of states.
Mathematically, the frequencies were adjusted using a regularization variable A,
called the pseudocount, as

B

f,(k) = )\iB<)\+ZI[a§b):k]>,

b=
% ( ) _ (b
£,k 1) = Ilo b ,b -nl.
5k, 0) HB( +2 1o ]) (35)
This insertion dampens the eagerness to fit the data meticulously, and it also
promotes invertibility of the matrix in (19).
Penalty term for PLM

Seeing that PLM does not concern itself with frequencies (it uses all the data),
we do not simply copy the approach above. Instead, we take the standard route
of adding a penalty term to the objective function:

{hPL]V[’JPLM} _ aﬁlﬁn{npu(h,.]) + R(h,J)}. (36)

The turnout is then a trade-off between likelihood maximization and whatever
qualities R is pushing for. We stick to the penalty-term pedagogy here, but this
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common technique has other interpretations. It is, for example, equivalent to
enforcing prior distributions on the model parameters. Our main selection for

R is
Ry,(h,J) —AhZIIh 1242 Z Z 1935113 (37)
=1 j=1+1
where
q
3 = Y hi(k)?,
k=1
q q
T3 = D Jii(k,1)? (38)

e
Il
—

=1

This is called lo-regularization. Ry, clearly punishes large parameter magnitudes
and nudges the optimum toward the origin of the parameter space. Indeed, as
far as R;, is concerned the ideal solution would be all parameters at zero. This
addition will serve to calm the estimator’s drive toward too picky a fit. It is up
to the user to control the compromise between R and the original objective by
prescribing well-sized regularization constants A\, and Aj.

Balakrishnan et al. (2011) instead used the group [y -reqularization term

R, (h,J) AhZHh ||2+AJZ Z 11355112 (39)

i=1 j=i+1

In Ry, , coupling parameters associated with the same pair are gathered inside
a square root (each pair is a ’group’ in this case). This way, the parameters
belonging to the same J;; are collectively repressed and pushed toward zero as
a pack. [j-regularization generally gives sparser solutions (solutions where more
parameters are exactly zero) than lo-regularization does; a tiny parameter con-
tributes less to the penalty term if squared first. With group [;-regularization,
one should expect pairwise sparsity, i.e., expect optimums at which many J;;
are zero-matrices.

Either of these regularization terms would be a sensible choice for our prob-
lem. Ry, is a differentiable function, so it adds little labor to the optimization.
Rgi,, on the other hand, suffers from nondifferentiability at points where a zero
occurs under a root sign. We use R), as our chief regularizer, but in section 5.9
also provide some comparing results for Ry, .

Ri,, Rg,, and overparameterization

In section 3.2, we pointed out that constraints like (6) or (7) ensure a unique
solution to the inverse Potts problem. It turns out that R;, and R, actually
autoserve as enforcers of such constraints. Suppose, for a visualizable example
of why that could be, that minima under the full parameterization occur along
a curve in 3D-space (not a unique point). R;, and Ry, both encourage solu-
tions close to the origin, hence preferring a particular point on the curve. More
specifically, the use of any strictly convex regularizer will remove the freedom
of the full parameterization (Schmidt, 2010). This allows us the luxury of using
all parameters in our PLM implementation.
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To conclude this section: for NMFI, we follow Morcos et al. (2011), i.e., reg-
ularize with pseudocounts under the constraints (6). For PLM, we regularize
with R;, (and in section 5.9 Ry, ) under the full parameterization.

4.5 Sequence reweighting

As discussed at the end of section 3.2, an overlook of the MSAs in Pfam dis-
agrees with the premise of independent samples. The observed skewing has
several probable reasons: bias in choices of which species to sequence from and
phylogenetic bias caused by evolutionary relatedness between the species, to
name but two.

A blunt way to mitigate effects of sequence interdependence would be to step
through the MSA and remove alike sequences. But, that would unnecessarily
dispose of a chunk of the information at hand. A better approach, employed
by Morcos et al. (2011), is to equip each sequence o® with a weight wy, which
regulates the impact on the parameter estimates. Sequences judged as unworthy
of independent-sample status (too similar to other sequences) can then have
their weight lowered.

Morcos et al. (2011) measured the similarity of two sequences as the fraction
of positions where the amino acids are identical. They were deemed 'too’ similar
if this fraction exceeded some predefined margin x , 0 < x < 1. The weight put
on sequence o was wy, = m%,’ where m;, was the number of sequences in the

MSA similar to o®:

my = |{a,1 < a < B : similarity(c'¥,o®) > 2}|. (40)

This way, distinct sequences (as specified by z) were awarded a weight of 1,
whereas a sequence with, for example, 50 other similar ones in the MSA (as
specified by x) received a weight of 1/50. A suitable threshold = was found to
be 0.8 (results were only weakly dependent on this choice throughout 0.7 < = <
0.9).

Featuring this reweighting idea in a parameter selection procedure means
rescaling each sequence quantity by its weight. Morcos et al. (2011) did this
right at the calculation of the frequencies, as

B
1 b)
f,(k) = wI o = k],
B
1
Bi(khD) = p—> wllo” = klllo)” = 1) (41)
€l p=1

where B.fr = Zle wp becomes a measure of the number of nonredundant, or
effective, sequences. The final frequency formulas used, combining reweighting
and pseudocounts, were
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£i(k) = )\+Beff< +Zwb1 )

fij(k,1) = A+Bff< +Zw[ <b>—kI[a§”>—1}>. (42)

We now translate this step to PLM. The objective function npll acknowledges
each sample with a sum across the N nodes (see (23)). Appropriate rescaling
ought to multiply this whole sum by the sequence weight. Therefore, our choice
of objective function for PLM is not (23), but

B N

Zwaln [P{h a0 =o®o, = ag”))] L (43)

effbl r=1

npll(h,J) =

4.6 Interaction scores

As the procedures have been described so far, each pair (i, ) spawns a whole
matrix JZ‘j of estimates. It is not our goal to rank interconnection strengths
between specific position/amino acid combinations, which the elements J;;(k, )
represent; the end product should be a single magnitude for each pair (¢, 7). We
therefore need a fair way to break each matrix J;; into one score.

Mutual information

We start by mentioning a classical scoring tool not involving the Potts model. It
is called mutual information (MI), and is computed directly from the frequencies
as

Zqukzm< ”(’; ) ) (44)
2.2 F(RE (1)
Formally, it is the Kullback-Leibler divergence between the joint and the marginal
distributions of the node variables. It serves as a dependence measure taking on
zero if positions ¢ and j are not interacting and nonzero values otherwise. MI
does not distinguish direct from indirect interactions well. Being outperformed
by NMFI (Morcos et al., 2011) and PSICOV (Jones et al., 2012), it helped
highlight the power of a direct-coupling analysis for PSP.

Direct information

For NMF1I, Morcos et al. (2011) used a score called direct information (DI) (pre-
viously introduced by Weigt et al. (2009)) whose construction goes as follows.
For each pair (,7), (the estimate of) J;; is used to set up a ’direct distribution’
involving just nodes ¢ and 7,

PY (k1) ~ eap (Jij(k, 1) + By + 1) (45)

R,  and hj ; are new fields, computed as to ensure agreement with the individual
frequenc1es
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q
fi(k) = > P (k,0),

=1

£,(0) = fja@fi”)<k,1>. (46)
k=1

After a simple normalization of Pl-(;m), the DI score is calculated analogously to

MI

)

q q P(d“”)(k l)
(dir) i ’
DI;; = P (R Din | =+ | - 47
R Rt (g o
DI recognizes only exchange which is direct between nodes ¢ and j. Moreover, it
can be shown to be independent of what parameter constraints are used; corre-
sponding parameter sets under (6) and (7) (or other choices) generate identical
DI

Frobenius norm

Although we could certainly use DI for PLM, this would require a pseudocount
A to regularize the frequencies in the DI computation, introducing a third reg-
ularization variable in addition to A, and A;. Another possible quantity by
which to rank, mentioned by Weigt et al. (2009), is the Frobenius norm

q q
isllz = 4| DD Jii(k, )2 (48)

k=11=1

Unlike DI, this measurement is not independent of constraint choice, so we must
be a bit careful. (7) are the constraints that shift as much as possible of the
exponential in (4) into the fields ((7) minimizes the Frobenius norm, as Weigt
et al. (2009) had noted), in a sense making (7) the appropriate fix under which
to compute the score (48). Recall from section 4.4 that our algorithm uses the
full representation and lets R;, or Ry, autofix the parameters. Luckily, it is
straightforward to transfer between constraints after we have our estimates. To
switch into (7), we use

JQJ»(]C, l) = Jij<k‘, l) — Jij(-, l) — Jij(k, ) + Jij(-, -), (49)

where '~ denotes average. One can show that (49) preserves the probabilities
of (4) (after altering the fields appropriately) and that Jj;(k,1) satisfy (7). A
possible Frobenius norm score is hence

q q
FNij = Jilla = | D> Ti(k, 1) (50)

k=11=1

Jones et al. (2012), whose PSICOV method also used a norm rank (but [;-
norm instead of Frobenius norm), adjusted their scores with an average product
correction (APC) term. APC was used for MI by Dunn et al. (2008) to suppress
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effects from phylogenetic bias and insufficient sampling. We also incorporate this
correction, making our final output

FN,FN;

CNij = FNZ] — N s

(51)
where CN stands for ’corrected norm’.

4.7 The finished algorithms

Below, we recap all the steps from MSA to finished interaction scores. Input
variables for NMFI are reweighting threshold x and pseudocount A, and the
steps are:

1. Calculate weights wy, = m%) according to (40) (takes x).
2. Calculate frequencies using (42) (takes \).

3. Assemble and invert the correlation matrix, and collect coupling estimates
from (19).

4. Calculate DIs as described in section 4.6.

For PLM, the user-specified variables are reweighting threshold x and regular-
ization constants A, and A, and the steps are:

1. Calculate weights wy, = m%, according to (40) (takes x).
2. Get coupling estimates by solving (36) with npll as in (43) (takes A; and
AJ).

3. Impose the constraints (7) using (49) on the coupling estimates.

4. Calculate CNs using (50)-(51).

4.8 Implementation in MATLAB/C

One of the appeals of NMFT is that the Potts inversion is so simple; a single
MATLAB command will invert a matrix rather efficiently. Out of the steps in
the previous section, only PLM’s step two (the minimization) is challenging to
realize in code. Under ls-regularization, even this step is quite straightforward
since the objective is smooth.

There is a large library of efficient algorithms for solving smooth, uncon-
strained (convex) optimization problems. Some of the most well-known are
Newton descent, quasi-Newton descent, and conjugate gradient (CG). We use
CG, since it is a first-order method, i.e., requires no higher-order derivative
than the gradient, and since it uses little memory. Newton and quasi-Newton
methods involve the Hessian (albeit approximate in the quasi case), which could
require time-costly evaluations or strain the RAM because of large storing de-
mands. CG needs the gradient for npll, which we now show how to calculate.
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From (21) we have, for some sample o(®,

In {P(or =oPo\, = a(b))} =
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N q N
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Note that In {P(ar = 0'7(~b)|0'\r = 0'8;))} depends only on parameters associated

with node r. The derivative with respect to a coupling is
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and the field derivatives fall out similarly,

9 )
oh,(s)

In {P(ar = O'T(.b)|0'\r =0\, ®)

= Io® =s] - P(o, = sl = o,).

(54)

In combination with (21) and (43), (53)—(54) enable evaluation of the gradient
of npll.

M. Schmidt provides a versatile optimization package (http://www.di.ens.fr/
~ mschmidt/Software/, see e.g. Schmidt et al. (2008)) which, among other
things, executes parameter learning in the Potts model. It is wrapped by a
MATLAB interface and outsources heavy crunching to C. Support is included
for CG but also for techniques targeted toward nondifferentiable optimization.
The latter enables use under group [;-regularization. The package uses the full
parameterization for J but places h;(q) = 0. This introduces a slight asymmetry
in our regularization (the states are not interchangeable), but the effect of this
should be small.

Code manipulation is required to fully integrate our plans with this opti-
mizer. For instance, no sequence reweighting is included in the original program
(the package is not geared toward PSP specifically), and neither is field regu-
larization. Our end product is a MATLAB file which carries out PLM’s steps
1, 3, and 4, and for step 2 calls this (by us modified) optimization package. For
NMFT, we use code provided by Morcos et al. (2011). For the data analysis and
plot generating (see the next chapter), we use our own MATLAB scripts.
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5 Experiments and discussion

We have performed experiments using NMFI and PLM on domain families from
Pfam, and the results are reported and discussed in this chapter.

5.1 Families, crystal structures, and true-positive rates

The speed of NMFT enabled Morcos et al. (2011) to conduct a large analysis
using 131 families. PLM is computationally more demanding than NMFI, and
we were limited in processing power and working memory, so we settled for a
subcollection of 17 of these families. These are listed in table 1. To ease the
numerical effort, we targeted families with relatively small N.

To reliably assess how good a contact prediction is, something to regards as
ground truth is helpful. All 131 families chosen by Morcos et al. (2011) had at
least two accessible X-ray crystal structures of resolution < 3A. When multiple
structures are available for a family, deciding which to use is a task in itself.
The crystal data was provided to us by Morcos et al. (2011), so our pick was
simply the same as theirs (see their paper for details).

Family ID | N | B Beyr (90%)
PF0O001T | 102 | 7151 | 3481
PF00013 | 58 | 11484 | 3785
PF00014 | 53 | 3090 | 1812
PF00017 | 77 | 4403 | 1741
PF00018 | 48 | 8993 | 3354
PF00027 | 91 | 17830 | 9036
PF00028 | 93 | 18808 | 8317
PF00035 | 67 | 5584 | 2254
PF00041 | 85 | 26172 | 10631
PF00043 | 95 | 9619 | 5141
PF00046 | 57 | 15445 | 3314
PF00076 | 70 | 31837 | 14125
PF00081 | 82 | 5867 | 1510
PF00084 | 56 | 9816 | 4345
PF00105 | 70 | 4842 | 1277
PF00107 | 130 | 28022 | 12114
PF0O0111 | 78 | 11941 | 5305

Table 1: Domain families included in our study, listed with Pfam ID, length
N, number of sequences B, and number of effective sequences By (under 90%
reweighting).

Accuracy results here are reported primarily using true-positive (TP) rates,
also the principal measurement of Morcos et al. (2011) and Jones et al. (2012).
The TP rate for p is the fraction of the p strongest-scored pairs which are
actually contacts in the crystal structure (defined using a cutoff distance of
8.5A, a choice motivated shortly). To exemplify TP rates, let us jump ahead
here and look at fig. 5. For PLM and PF00076, the TP rate is one up to p = 80,
which means that all 80 highest-CN pairs are genuine contacts in the crystal

26



structure. At p = 200, the TP rate has dropped to 0.78, so 0.78 - 200 = 156 of
the top 200 highest-CN pairs are contacts, and 44 are not.

a) All pairs (i,j) b) |i-|>4 c) i|>14
" 500
S 600
g 1000 400
5
§ 400 300
2 500 200
é 200
E 100
=
0 0 0
0 85 20 40 0 85 20 40 0 85 20 40
Distance (A) Distance (A) Distance (&)

Figure 4: Histograms of crystal-structure distances pooled from all 17 families.
The headers state the types of pairs included. The red line is our contact cutoff

8.5A.

5.2 The real distribution of distances

Figure 4a shows the distribution of position-position distances d(4,j) in all our
families, as available from the crystal structures. Three peaks protrude from
the background distribution: one distinct at a short distance and two less pro-
nounced around 3-5A and 8A. The first one likely corresponds to sequence
neighbors, i.e., pairs with small |i — j|. The other two were observed in the
NMFT output of Morcos et al. (2011), and the interpretations provided said
that the second peak ”presumably arises from short-ranged interactions like
hydrogen bonding or pairings involved in secondary structure formation” and
that the third peak ”likely corresponds to long-ranged, possibly water mediated,
contacts”.

When ignoring pairs with |[i — j| < 4, as done in fig. 4b, the first peak
vanishes. We conclude that it must indeed arise from pairs of neighboring
positions (e.g. as defined by |i — j| < 4). Uncovering such contacts is in a
sense uninteresting, since chain neighbors are trivially expected to be in each
other’s vicinity. Digging up the positions that are close in 3D-space but distant
in sequence order is what can really tell us something about the chain’s spatial
conformation. The second and third peaks, which remain in the |i — j| > 4 and
|i — j] > 14 plots, thus hold the bulk of what is interesting to catch. Morcos et
al. (2011) evaluated accuracies using pairs with |¢ — j| > 4 only, and many of
the results we present here do the same (when and when not is stated in each
individual case). This regards only the post-inference analysis, though; in the
parameter selection all pairs were allowed to impact.

The cutoff distance to define 'contact’ was by Morcos et al. (2011) put at
8A. Guided by our distance distributions, we chose to raise this cutoff to 8.5A
to accept the entire third peak into the definition.
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5.3 Set-up and preparatory tests

To set the stage for the comparison, we started by running initial trials on our
17 families using both NMFI and PLM with many different regularization and
reweighting strengths. Reweighting indeed raised the TP rates, and, as was
reported by Morcos et al. (2011) for the 131 families, results seemed robust
toward the exact choice of the limit z around 0.7 < x < 0.9. We chose z = 0.9
to use throughout the study.

In what follows, NMFT results are reported using the same list of pseudo-
counts as in fig. S11 of Morcos et al. (2011): A = w - Besy with w = {0.11,
0.25, 0.43, 0.67, 1.0, 1.5, 2.3, 4.0, 9.0}. During our analysis we also ran many
intermediate values, but we found this covering sufficiently dense. We will give
outputs from two versions of NMFI: NMFI-DI and NMFI-DI(true). The for-
mer uses pseudocounts for all calculations, whereas the latter switches to true
frequencies when it gets to the DI evaluations.

With lp-regularization (our main focus) outcomes were robust against the
precise choice of \p; TP rates were pretty much identical when A, was changed
from 0.001, to 0.01, to 0.1 (yet, Ay, > 0 seemed necessary). We therefore chose
to fix Ay, = 0.01 for all experiments. What mattered, rather, was the coupling
regularization A ;, for which we did a systematic scan from A; = 0 and up using
stepsize 0.005.

So, to summarize, the turnouts reported here are based on & = 0.9, cutoff
8.5A, and A, = 0.01, and draw A and A\, from the collections described above.

5.4 Main comparison

Figure 5 shows TP rates for the different families and methods. We see that
PLM’s TP rates are consistently greater than NMFTI’s, especially for families
with large Besr. As for the two NMFI versions: NMFI-DI(true) dodges the
complete failure seen in NMFI-DI for PF00084, but for other families, such as
PF00014 and PF00081, the performance instead drops using true DIs.

For both NMFI-DI and NMFI-DI(true), the best regularization was found to
be A =1-Bcs¢, with A = 1.5- Bc¢r and A = 2.3- B¢ as the runners-up. This is
a nice outcome, since A = 1- B.ss also showed optimal performance for the 131
families of Morcos et al. (2011). For PLM, the best was Ay = 0.01, followed by
Ay = 0.005 and Ay = 0.015. Interestingly, these same regularization strengths
were optimal for basically all families. This is somewhat surprising, since N and
especially B sy span quite wide ranges (48-130 and 1277-14225 respectively).
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Figure 5: Contact-detection results for all the families in
p, based on pairs with |¢ — j| > 4. The three curves for
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Figure 6: Mean TP rates, using pairs with |i — j| > 4, taken over all families, a)
without and b) with adjustment for varying domain lengths. For each method,
the five best regularization choices are shown.

Mean TP rates

Figure 6a shows the mean TP rates over all 17 families. Since the number of
pairs differs quite a bit between families (1128-8385), the mean TP rate at 'top
p pairs’ might be a skewed way to measure. We therefore also present fig. 6b:
the mean TP rate as a function of p/N instead of p. PLM’s curves clearly hover
higher than all those of NMFI. For N/2 predicted pairs (50% in figure 6b), for
example, PLM identifies about 90% contacts and NMFI about 80%.

So, this first survey suggests PLM indeed offers some interesting improvements.
We should not be too hasty in attributing this to pseudolikelihoods, however,
since both regularization and scoring differ between the methods (we return to
this soon).

Now follows a more in-depth breakdown of the output. We leave out results
for NMFI-DI(true) and focus on PLM vs. NMFI-DI (the version used by Morcos
et al. (2011)). All plots remaining in section 5.4 use the optimal regularization
values: A = Bgyy for NMFI and Ay = 0.01 for PLM.

Score vs. distance

TP rates only classify pairs as contacts (d(i, j) < 8.5A) or noncontacts (d(i, j) >
8.5A). To give a more detailed view of how score correlates with spatial separa-
tion, we show in fig. 7 distance distributions for all top-30 ranked nonneighbor
pairs. PLM and NMFI-DI both manage to raise the two peaks seen in the true
distance distribution of fig. 4b. The peak at 3-5A clearly dominates the top-30,
especially according to PLM’s read. As expected from its lesser mean TP rate
at p = 30, NMFI-DI shifts more of its top-30 onto distant pairs.

Figure 8 shows score vs. distance for all pairs in all families. Both methods
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agree that interactions get progressively weaker going from peak one, to two, to
three (in order as they appear in fig. 4a). Note that the dots splash differently
across the PLM and NMFI-DI figures, probably reflecting that two separate
scoring techniques are being used. We can see here how sparse the signal we
are seeking to extract is; most close pairs do not show up statistically coupled.
Conversely though, almost all strongly coupled pairs are close, so the biological
hypothesis of chapter 2 is well supported here.
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Figure 7: Histograms of crystal-structure distances for the collection obtained
by joining the top-30 ranked |i — j| > 4-pairs from each family.
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Figure 8: Score plotted against distance for all pairs in all 17 families. The red
line is our contact cutoff at 8.5A.
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Scatter plots

Figure 9 shows scatter plots for PLM and NMFI-DI for some selected families®.
The points assemble around a vaguely linelike shape, so, to some extent, PLM
and NMFI-DI agree on the interaction strengths. Many of PLM’s top contacts
are also top contacts for NMFI-DI and vice versa. A striking contrast, though,
is how much stronger NMFI-DI responds to pairs with small |¢ — j|; the blue
crosses tend to shoot out to the right. PLM agrees that many of these neighbor
pairs interact strongly, but, unlike NMFI-DI, it also shows rivaling strengths for
many |i — j| > 4-pairs. It appears that NMFT’s 'neighbor enthusiasm’ might
somewhat derange its judgment of the more interesting |i — j| > 4-pairs.

Contact maps

Another way to visualize the comparative performance of the two methods is
contact maps, shown in fig. 10. The tendency observed in the scatter plots re-
mains: NMFI-DI has a larger portion of highly scored pairs in the neighbor zone
(the middle stretch of the figures). Clusters of strongly interacting neighbors
are caught by both algorithms, but PLM marks such sections using fewer pairs.
NMFI-DI displays somewhat loopy behavior in these regions; where PLM, for
instance, identifies pairs of the type (1,2), (2,3), and (3,4), NMFI-DI tends to
in addition include pairs like (1,3), (1,4), and (2,4), which could be argued to
be somewhat redundant.

Circle plots

To get a sense of how false positives distribute across the domains, we draw
interactions into circles in fig. 11. Some loopy attitudes are observed among
the erroneously claimed contacts, especially for NMFI-DI; the blue lines tend to
"bounce around’ in the circles. It seems that relatively few nodes are responsible
for many of the false positives. We performed an explicit check of the data
columns belonging to these ’bad’ nodes, and we found that they often contained
strongly biased data, i.e., had a few large f;(k). In such cases, it seemed that
NMFI-DI was quicker than PLM to ’cry interaction’.

5Some figures (the scatter plots, contact maps, and circle plots) show results from a few
families only. However, the patterns brought up here were observed for all families.
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Figure 10: Contact maps for PLM and NMFI-DI from four families. A pair
(i,7)’s placement in the plots is found by matching positions ¢ and j on the
axes. Contacts are indicated by gray (dark for d(i,j) < 5A and light for
5A< d(i,j) < 8.5A). True and false positives are represented by circles and
crosses, respectively. Each figure shows the 1.5N strongest ranked pairs (in-
cluding neighbors) for that family.
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Figure 11: Connections for four families overlaid on circles. Position ’1’ is
indicated by a dash. The leftmost column shows contacts in the crystal structure
(dark gray for d(i,j) < 5A and light gray for 5A< d(i,j) < 8.5A). The other
two columns show the top 1.5N strongest ranked |i — j| > 4-pairs for PLM and
NMFI, with black/red for true positives and blue for false positives.
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This concludes the comparison between PLM and the original NMFI-DI of
Morcos et al. (2011). Our PLM program does offer a boost in TP rates. It seems
as if the separation in performance might be traceable to NMFI’s fixation on
neighbor pairs. It could be debated whether this fixation is a weakness or not;
neighbors are close in space, after all. Indeed, recreating fig. 5 with all pairs
(data not shown) shows a much more even race between NMFI and PLM, where
NMFI mainly capitalizes on the many |i — j| < 4-pairs it correctly classifies as
contacts.

Moreover, none of this can be confidently attached to the Potts inversion
yet, since scoring and regularization differ. The split in performance could, for
example, be entirely thanks to the APC.

5.5 Other scores for naive mean-field inversion

We also attempted to raise NMFI performance by using the APC term for the
DI measurements. In addition, we tried the CN score for NMFT (first switching
the parameter constraints from (6) to (7) using (49)). Mean TP rates using the
old and new scores are shown in fig. 12. APC increases TP rates slightly but not
enough to touch the PLM curves in fig. 6. Interestingly, the CN measurement
gives the best results (except for p = 2).
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Figure 12: Mean TP rates, using pairs with |i—j| > 4, for NMFI with old scores
DI and DI(true), new APC scores CDI and CDI(true), and the norm score CN.
Each curve corresponds to the best A for that particular score.
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5.6 Comparison using a common score

Motivated by the results of fig. 12, we decided to match NMFI and PLM under
the CN score. All figures in this section show the optimal regularization for
each method, unless said otherwise. Figure 13 shows score vs. distance for all
|i — j| > 4-pairs in all families. Unlike fig. 8a—b, the two plots now show very
similar profiles. Note, however, that NMFI’s CN scores are consistently two to
three times larger than PLM’s (the scales on the vertical axes are different).
Perhaps this is inherent within the methods, or simply a consequence of the
different regularization types (for which the optimal strength may be different).

a) PLM b) NMFI-CN

8.5 20 40 8.5 20 40
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Figure 13: Score plotted against distance for all |[i—j| > 4-pairs in all 17 families.

TP rates

Figure 14 recreates fig. 5 with CN as a measure for NMFI. The three best
regularization choices for NMFI-CN turned out the same as before, i.e. A =
1-Bef, A =1.5-Beyy and A = 2.3 Beyy, but the best out of these three
was A = 2.3 - Besy (instead of A = 1- Beyp). NMFI here performs closer to
PLM; for several families, the prediction quality is pretty much the same for
both methods. Still, PLM maintains slightly higher TP rates overall.

Scatter plots

Figure 15 shows renewed scatter plots for the families of fig. 9. This time,
using CN for NMFI, the points are more clearly administered along a line, so
the bends in fig. 9 must have been a consequence of differing scores. Yet, the
trends seen in fig. 9 stay: NMFI gives more attention to neighbor pairs than
PLM does.

Contact maps

In fig. 16 we recreate the contact maps of fig. 10 with NMFI-CN in place of
NMFI-DI. The plots are more symmetric now. As expected, asymmetry is seen
primarily for small |i — j|; NMFTI tends to crowd these regions with lots of loops.
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Figure 14: Contact-detection results for all the families in our study (sorted
by Besyr), now with the CN score for NMFI. Y-axes are TP rates and x-axes
are the number of predicted contacts p, based on pairs with |i — j| > 4. The
three curves for each method are the three regularization levels yielding highest
TP rates across all families. The thickened curve highlights the best one out of
these three (A = 2.3 - B.yy for NMFI-CN and A; = 0.01 for PLM).
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PLM (CN)

x Neighbor pair: |i—j|<5

@ Contact (close): 0 < true distance<5 (and |i-j| = 5)
[¢) Contact (further apart): 5 < true distance<8.5 (and |i-j|= 5)
-] Noncontact: true distance > 8.5 (and |i—j|=5)

PF00018 PF00028
j - j j j j j X
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Figure 15: Scatter plots of interaction scores for PLM and NMFI-CN from four
families. For all plots, the axes are as indicated by the top left one. The distance
unit in the top box is A.
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X

NMFI-CN i

PF00043 PF00046

NMFI-CN

Figure 16: Contact maps for PLM and NMFI-CN from four families. A pair
(i,7)’s placement in the plots is found by matching positions ¢ and j on the
axes. Contacts are indicated by gray (dark for d(i,j) < 5A and light for
5A< d(i,j) < 8.5A). True and false positives are represented by circles and
crosses, respectively. Each figure shows the 1.5N strongest ranked pairs (in-
cluding neighbors) for that family.
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Gap-gap interactions

To investigate why NMFI assembles so many top-scored pairs in certain neighbor
regions, we performed an explicit check of the associated MSA columns. A
relevant regularity was observed: when gaps appear in a sequence, they tend to
do so in lengthy strands. It tends to look something like the following made up
MSA (in our implementation, the gap state is 1):

..659726874422 ..
..111111111128...
..652723895423 ...
..374726879423 ...
..374723889429 ...
.. 111111145429 ...
..859729874424 ..
111111111124 ...

These injections are necessary for satisfactory alignment (as described in section
2.3) and could perhaps explain the split behavior of our two methods. This
type of pattern is bound to induce large J;;(1,1) for some pairs with small
|i—j]. Remember that we treat gaps as just another amino acid, with associated
interaction parameters.

Figure 17 shows scatter plots for all coupling parameters J;;(k, 1) in PF00014,
which has a modest amount of gap sections, and in PF00043, which has rela-
tively many. As suspected, the J;;(1,1)-parameters are among the largest in
magnitude, especially for PF00043. Note how the red dots steer to the right;
NMFT clearly reacts harder to the gap-gap interactions than PLM.

PF00014 PF00043
25 : ; 2 : : :
2 15
15¢ ¢
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1t
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ZZ 05 72
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15 15
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Figure 17: Scatter plots of estimated J;;r = J;;(k,1) from PF00014 and
PF00043. Red dots are 'gap—gap’ interactions (k = [ = 1), turquoise dots
are 'gap—amino-acid’ interactions (k =1 and l # 1, or k # 1 and [ = 1), and
blue dots are ’amino-acid—amino-acid’ interactions (k # 1 and [ # 1).
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Jones et al. (2012) ignored contributions from gaps in their scoring by simply
skipping the gap state when doing their norm summations. We tried this but
found no significant improvement for either method. The change seemed to
affect only pairs with small |i — j| (which is reasonable), and our TP rates are
based on pairs with |i — j| > 4. If gap interactions are indeed responsible for
reduced prediction qualities, removing their input during scoring is just a band-
aid type solution. An better way would be to suppress them already in the
parameter estimation step. That way, all interplay would have to be accounted
for without them. Whether or not gaps should be recognized as normal amino
acids is an issue which goes somewhat beyond the biological scope of this work,
however.

Everything shown so far was done with reweighting margin = = 0.9. Perhaps
the gap effect can be dampened by stricter definition of sequence uniqueness?
We show in fig. 18 another bunch of TP rates, now for x = 0.75. We also include
results for NMFI run on alignment files from which all sequences with more than
20% gaps have been removed. The best regularization choice for each method
turned out the same as in fig. 14: A = 2.3 - Beyy for NMFI and A; = 0.01
for PLM. Overall, PLM keeps the same modest advantage over NMFT it had in
fig. 14. Removing gappy sequences seems to trim down more TP rates than
it raises, probably since useful information in the nongappy parts is discarded
unnecessarily.
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Figure 18: Contact-detection results for all the families in our study. Y-axes are
TP rates and x-axes are the number of predicted contacts p, based on pairs with
|i—j] > 4. The black and green curves are for reweighting margin « = 0.75, and
the purple curve is for reweighting margin = 0.9 after deletion of all sequences
with more than 20% gaps. The curve for each method corresponds to the
regularization level yielding highest TP rates across all families (A = 2.3 - By
for both NMFI-CN and Ay = 0.01 for PLM).
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5.7 Running times

Since PLM has an objective function which accumulates additional terms for
each sample, its execution time is heavily dependent on B. On one core of a
standard desktop computer, running times using lo-regularization with A ;=0.01
for PF00014, PF00017, and PF00018 — all with relatively small B — were 9,
22, and 12 minutes respectively. Using a L-BFGS method, which was faster but
heavier on the RAM than CG, the same jobs took 5, 14, and 7 minutes. For
PF00041, which had larger B (and N), one run using CG took 2.5 hours.

The matrix inversion of NMFI does not depend on the amount of samples
used to compute the frequencies. In general, NMFI is very quick; most families
in this study took only seconds to run through the NMFI code.

Possible speed-ups

Our use of PLM was geared more toward reliability than speed. For instance,
we demanded changes in the seventh decimal or so before terminating the de-
cent. Much time was therefore spent polishing the last decimals, providing only
superficial accuracy in the end. Relaxing the precision properly could cut a
significant chunk of the running time. Furthermore, we cold-started with all
fields and couplings at zero, which is not very efficient. A clever starting guess
using the frequencies, or perhaps the NMFT estimates, would further reduce the
convergence time. These relatively simple tweaks were not necessary for our 17
small families, but they could become important for domains with larger N. If
the scaling with NV becomes really problematic, a more drastic way to tame it
could be to allow only a predefined number of pairs to participate in the learn-
ing (perhaps top-MI pairs), as done by Weigt et al. (2009). Support for this is
already included in the package by M. Schmidt.

If one were to reimplement PLM with speed as a priority, one should prob-
ably consider the broken up variant described in section 4.2. It divides the
problem into N (multiclass) logistic regression problems which are completely
open to simultaneous solving.

Other ways to reduce the minimization time are of course also possible.

5.8 Concluding remarks

With that, we terminate the comparison of NMFI with ls-regularized PLM.
So, what is the final verdict? Certainly, the systematic increase in TP rates
seen in fig. 5 is worthy of some attention; our new program seems to bring
‘something’ to the table. We managed to tie part of PLM’s lead to the CN
score. Indeed, this new, easy-to-calculate score is a relevant find in itself: CN
consistently outputs higher TP rates than the more cumbersome DI, at least
for our 17 (small) families. In fact, the accuracy jump from DI to CN is as big
as (if not bigger than) the remaining jump from NMFI to PLM.

Under the same score, the methods depart under extreme circumstances,
such as clustered neighbor interactions (induced by gap chains in the data) or
extreme node-bias. In these cases, PLM stands out as a guarded alternative to
the quick, zealous NMFI. That said, the agitative impulses of NMFI may be
thwartable by clever modifications to the inversion, or even by just substituting
the pseudocount for a penalty term. To linger on that point, we remark that
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it is, in principle, possible that the pseudolikelihood/mean-field choice matters
less than the style of regularization; we have not matched the methods under
the same regularization type.

5.9 [y- vs. group [;-regularization

We end with a quick analysis of some group l;-regularization trials which we ran
to see if obvious improvements were to be had by switching from R;, to R, .
These trials were done using A, = 0.01, z = 0.9, and the same type of scan over
Ay as before. We restricted ourselves to a subset of six families with relatively
small N and B. Figure 19 shows the results. For PF00105 we see significant
improvement: group l;-regularization has a TP rate of one up to about p = 25
compared with about p = 12 for ly-regularization. For PF00014 and PF00035,
we instead see a drop in TP rate using the new regularization. We cannot say
that this clearly beats the R;,-results.

The A; which gave the highest (average) TP rate for Ry, was 0.01. Under
this strength, solutions were not noticeably sparse. This hints that we’re not
seeing the real potential of R, here; edgewise sparsity is supposed to be an
appealing consequence of grouping the couplings. Perhaps the TP rate is ill-
placed as a measurement when the focus is on plausible structure (rather than
precise interaction strengths). With this is mind, we ignored the dropping TP
rates and increased \; until we saw pronounced sparsity. Figure 20 shows
scatter plots for Ay = 0.13. Most scores are forced to zero (or slightly below
zero because of the APC). As far as prediction quality goes, these plots send
somewhat mixed messages: while contacts seem more reluctant to go to zero
than noncontacts, there are also bunches of contacts which Ry, suppresses which
are highly ranked under R;, (note the strings of greens dots on the rightmost
part of the ’zero-lines’).

The study by Balakrishnan et al. (2011), which we came upon during the
course of this work, goes all out in exploiting the sparsity pressure of Ry, . In
contrast to our 'manual’ pick, they engage in a rigorous Aj-calibration which
commits to a structure using the data. Perhaps higher TP rates would emerge
if R;,-estimation was executed on top of the Ry, -inferred structure skeleton
(this is also mentioned in their paper). Their package, called GREMLIN (Gen-
erative REgularized ModeLs of proteINs), can be run through their webserver
(http://langmeadlab.org/gremlin.php).
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Figure 19: Contact-detection results for six families using PLM with group [;-
regularization and [o-regularization. Y-axes are TP rates and x-axes are the
number of predicted contacts p, based on pairs with |i — j| > 4. The three
curves for each method are the three regularization levels yielding highest TP
rates across the six families. The thickened curve highlights the best one out of
these three (A; = 0.01 for both R;, and Ry, ).
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Figure 20: Scatter plots of interaction scores for six families using PLM with
group li-regularization (A; = 0.13) and ls-regularization (A; = 0.01). For all
plots, the axes are as indicated by the top left one. The distance unit in the top
box is A.
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6 Summary and possible future work

In this thesis, we have broken apart a freshly conceived, mean-field based
protein-contact detector and reassembled it to run on maximized pseudolike-
lihoods. We have also put to use a new score, CN, for ranking interconnection
strengths. For a batch of small-sized domain families from Pfam, our new rou-
tine gave predictions (systematically) more precise than those of the mean-field
approach, an enhancement which we could partially attribute to the new score.
After updating the mean-field code to also score by CN, our pseudolikelihood
variant still maintained slight advantages. These were tied to slices of data de-
viating heavily from the model assumptions (such as sequences with gap-trains
tens of positions long).

It is hard to argue that PLM should replace NMFTI in general. If an analy-
sis is tarnished by network-transmitted correlations, NMFI can give incredibly
rapid causation/correlation disentanglement which likely makes the substantial
changes that really matter (if the particular application is ripe for it). For ex-
ample, the improvements reported here are much smaller than those seen when
going from MI to NMFI (as in Morcos et al., (2011)). Perhaps PLM’s main
role is to serve as a fallback routine to be brought in if NMFI, for one reason
or another, breaks down or performs poorly (as we have seen happen). As the
methods stand, PLM seems to offer a fair trade-in of speed for reliability, but
an exact zone of benefit is difficult to size up.

An extension of this project could be letting an experienced numerical pro-
grammer attempt a faster realization of PLM, perhaps as laid out in section 5.7.
This could be used to, for example, tackle all the 131 families used by Morcos et
al. (2011). It is, at present, unclear whether or not our positive results extend
outside the regime of small families. Another route going forward could be for
someone biologically schooled to implant more PSP specific operations into the
program. Several are imaginable (these overlap a bit, though): using cluster
considerations to treat whole groups of interacting positions (as mentioned by
Morcos et al. (2011)), theoretically backed special treatment of gap states, and
more advanced reweighting techniques, to name but a few. Also, because choice
of score seems as potent in its capacity to influence as choice of Potts inverter
(at least in this work), trying many scores and sorting out exactly what they
capture/miss would be interesting as well.
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