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Many neural networks can be regarded as attempting to approximate a 
multivariate function in terms of one-input one-output units. This 
note considers the problem of an exact representation of nonlinear 
mappings in terms of simpler functions of fewer variables. We review 
Kolmogorov‘s theorem on the representation of functions of several 
variables in terms of functions of one variable and show that it is 
irrelevant in the context of networks for learning. 

1 Kolmogorov’s Theorem: An Exact Representation Is Hopeless - 

A crucial point in approximation theory is the choice of the representation 
of the approximant function. Since each representation can be mapped 
in an appropriate network choosing the representation is equivalent to 
choosing a particular network architecture. In recent years it has been 
suggested that a result of Kolmogorov (1957) could be used to justify the 
use of multilayer networks composed of simple one-input-one-output 
units. This theorem and a previous result of Arnol’d (1957) can be con- 
sidered as the definitive disproof of Hilbert’s conjecture (his thirteenth 
problem, Hilbert 1900): there are continuous functions of three variables, not 
representable as superpositions of continuous functions of two variables. 

The original statement of Kolmogorov’s theorem is the following 
(Lorentz 1976): 

Theorem 1.1. (Kolmogorov 1957). There exist fixed increasing continuous 
functions hp,(x), on I = [0,1] so that each continuous function f on I“ can 
be written in the form 

2n+1 I 1  

f(x7, . . . Ixn> = C g q ( C  h p q ( x p ) ) $  
q=1 p=l 

where gp are properly chosen continuous functions of one variable 
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Figure 1: The network representation of an improved version of Kolmogorov's 
theorem, due to Kahane (1975). The figure shows the case of a bivariate function. 
The Kahane's representation formula is f(q,. . . ,z,J = Ci1;' g[CF=l lphq(zp)l 
where h, are strictly monotonic functions and l p  are strictly positive constants 
smaller than 1. 

This result asserts that every multivariate continuous function can be 
represented by the superposition of a small number of univariate contin- 
uous functions. In terms of networks this means that every continuous 
function of many variables can be computed by a network with two 
hidden layers (see Figure 1) whose hidden units compute continuous 
functions (the functions g, and hpq). 

Does Kolmogorov's theorem, in its present form, prove that a network 
with two hidden layers is a good and usable representation? The answer 
is definitely no. There are at least two reasons for this: 

1. In a network implementation that has to be used for learning and 
generalization, some degree of smoothness is required for the func- 
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tions corresponding to the units in the network. Smoothness of the 
h,, and of the g, is important because the representation must be 
smooth in order to generalize and be stable against noise. A number 
of results of Vituskin (1954, 1977) and Henkin (1964) show, how- 
ever, that the inner functions h, of the Kolmogorov’s theorem are 
highly not smooth (they can be regarded as “hashing” functions). 
Due to this ”wild” behavior of the inner functions h,,, the functions 
g, do not need to be smooth, even for differentiable functions f (de 
Boor 1987). 

2. Useful representations for approximation and learning are puramet- 
rized representations that correspond to networks with fixed units 
and modifiable parameters. Kolmogorov’s network is not of this 
type: the form of 9, (corresponding to units in the second “hidden” 
layer) depends on the specific function f to be represented (the h,, 
are independent of it). g, is at least as complex, for instance in 
terms of bits needed to represent it, as f .  

A stable and usable exact representation of a function in terms of 
two or more layers network seems hopeless. In fact the result obtained 
by Kolmogorov can be considered as a “pathology” of the continuous 
functions: it fails to be true if the inner functions h, are required to be 
smooth, as it has been shown by Vitushkin (1954). The theorem, though 
mathematically surprising and beautiful, cannot be used by itself in any 
constructive way in the context of networks for learning. This conclu- 
sion seems to echo what Lorentz (1962) wrote, more than 20 years ago, 
asking ’Will it [Kolmogorov’s theorem] have useful applications?. . . One 
wonders whether Kolmogorov’s theorem can be used to obtain positive 
results of greater [than trivial] depth.” Notice that this leaves open the 
possibility of finding good and well founded approximate representa- 
tions. This argument is discussed in some length in Poggio and Girosi 
(19891, and a number of results have been recently obtained by some 
authors (Hornik et al. 1989; Stinchcombe and White 1989; Carroll and 
Dickinson 1989; Cybenko 1989; Funahashi 1989; Hecht-Nielsen 1989). 

The next section reviews Vitushkin’s main results. 

2 The Theorems of Vitushkin 

The interpretation of Kolmogorov’s theorem in term of networks is very 
appealing: the representation of a function requires a fixed number of 
nodes, polynomially increasing with the dimension of the input space. 
Unfortunately, these results are somewhat pathological and their practical 
implications very limited. The problem lies in the inner functions of Kol- 
mogorov’s formula: although they are continuous, theorems of Vitushkin 
and Henkin (Vitushkin 1964, 1977; Henkin 1964; Vitushkin and Henkin 
1967) prove that they must be highly nonsmooth. One could ask if it is 
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possible to find a superposition scheme in which the functions involved 
are smooth. The answer is negative, even for two variable functions, and 
was given by Vitushkin with the following theorem (1954): 

Theorem 2.1. (Vitushkin 1954). There are T(r = 1,2,  . . .) times continuously 
differentiable functions of n 2 2 variables, not representable by superposition 
of r times continuously differentiable functions of less than n variables; there 
are r times continuously differentiable functions of two variables that are 
not representable by sums and continuously differentiable functions of one 
variable. 

We notice that the intuition underlying Hilbert's conjecture and theo- 
rem 2.1 is the same: not all the functions with a given degree of complex- 
ity can be represented in simple way by means of functions with a lower 
degree of complexity. The reason for the failing of Hilbert's conjecture is 
a "wrong" definition of complexity: Kolmogorov's theorem shows that 
the number of variables is not sufficient to characterize the complexity of 
a function. Vitushkin showed that such a characterization is possible and 
gave an explicit formula. Let f be an T times continuously differentiable 
function defined on I" with all its partial derivatives of order r belonging 
to the class Lzp[O, 11". Vitushkin puts x = (T + a)/n and shows that it can 
be used to measure the inverse of the complexity of a class of functions. 
In fact he succeded in proving the following: 

Theorem 2.2. (Vitushkin 1954). Not all functions of a given characteristic 
xo = qO'o/ko > 0 can be represented by superpositions of functions of charac- 
teristic x = q / k  > xo, q 2 1. 

Theorem 2.1 is easily derived from this result. 
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