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Most empirical studies of complex networks do not return direct, error-free measurements of network
structure. Instead, they typically rely on indirect measurements that are often error prone and unreliable. A
fundamental problem in empirical network science is how to make the best possible estimates of network
structure given such unreliable data. In this article, we describe a fully Bayesian method for reconstructing
networks from observational data in any format, even when the data contain substantial measurement error
and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical
case studies using real-world example networks, and specifically tailored to allow straightforward, com-
putationally efficient implementation with a minimum of technical input. Computer code implementing
the method is publicly available.
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1. Introduction

Networks are widely used as a convenient mathematical representation of the relationships between
elements of a complex system [1]. Network methods have been fruitfully applied to aid our understanding
of systems in physics, biology, computer and information sciences, the social sciences and many other
areas. A typical empirical network study will first determine the structure of a network of interest, using
experiments, field observations or archival data, then analyse that structure to reveal features of interest,
using any of the many quantitative analysis techniques developed for this purpose [2].

In this article, we focus on the first part of this process, on how we determine the structure of a network
from appropriate empirical observations. At first sight, this appears to be a straightforward task. Most
studies aim to measure the presence or absence of edges in a network, either singly or in some collective
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2 J.-G. YOUNG ET AL.

fashion, and then assemble a picture of the complete network by aggregating many such measurements.
Upon further consideration, however, it is apparent that the situation is not so simple, because most network
measurements do not tell us unambiguously about the presence or absence of edges. At best, they give
us a noisy indication, and in many cases they merely hint obliquely at the network structure [3]. As an
example, consider a protein–protein interaction network representing the pattern of physical interactions
between proteins in the cell. Such networks can be measured in a relatively direct manner. Techniques
such as affinity purification and two-hybrid screens can be used to determine whether a given protein
interacts with others [4, 5]. These techniques are notoriously unreliable, however, returning high rates
of both false positives and false negatives, so that individual measurements do not themselves tell us the
structure of the network [6]. Measurements may have to be repeated many times in order to separate the
signal from the noise [7].

A more complex example is the measurement of a social network such as a network of who is friends
with whom. Such networks can be measured by conducting surveys in which people are asked to identify
their friends [8]. Here, however, things can get complicated. For instance, it happens often that person A
identifies person B as a friend, but person B does not identify person A. In some communities, fully a half
of all friendships are ‘one-way’ friendships of this kind [9, 10]. Should two such people be considered
friends? Why do they disagree? Is one of the individuals mistaken, or forgetful, or not telling the truth?
Perhaps the two are using different definitions of friendship? Things become harder still when we consider
other data that are commonly gathered in such surveys, such as age, gender, race, occupation, income
or educational level of participants. Friendships are well known to depend strongly on such personal
characteristics and in cases where we are uncertain about a hypothesized friendship between two people
we may be able to use their traits to make a better informed decision about whether they are really
friends [11]. The best estimate of whether two people are friends may thus be the result of a complex
calculation that combines many inputs.

Most empirical studies of network structure, however, do not take such an approach. Even though
network data are known to be noisy and imperfect [6, 12–17], many experimenters nonetheless rely
on simple direct measurements of the presence of edges and effectively make the assumption that the
resulting data are the network. In a protein–protein interaction network, they assume an interaction to
be present if, for example, it is observed to exist enough times when measured. In a friendship network,
two people are assumed to be friends if one identifies the other as a friend. And yet, it is clear from the
discussion above that the true situation is more complicated than this. In realistic circumstances, we have
a heterogeneous body of data, potentially of many different types, potentially unreliable and varying in
its relationship to the actual network structure. In such circumstances, traditional methods for inferring
network structure from data may be inadequate and in some cases outright misleading.

In this article, we present a general framework for inferring network structure from measurements
using methods of Bayesian inference, along with a complete software pipeline implementing that
framework. The methods we describe take empirical measurements of a system and return a posterior
distribution over possible network structures, thereby telling us not only what the likely structure is but
also giving us an estimate of our certainty about that structure. Our approach requires a minimum of input
from the experimenter, the only information they need supply (other than the data) being a description
of how the measurements depend on the underlying network structure, which is specified at a high level
in the form of probability distributions—we give a number of examples in this article. The rest of the
calculation, from data to posterior distribution and final network structure, is performed automatically.
Application of Bayesian inference methods often requires experimentation to find the best approach for
a particular application. The level of automation in our framework makes this a straightforward task,
allowing one to easily experiment with different strategies and quickly see the results [18].
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 3

The problem we address falls in the general area of network reconstruction, the challenge of determin-
ing the structure of a network from the available data, though one might also think of it as simply network
measurement, akin to the experimental or observational determination of any quantity in the natural and
social sciences. There has been a considerable amount of previous work on network reconstruction, much
of it in the subject-specific literature and directed at the reconstruction of particular types of networks
or using particular types of data. Methods have been proposed, for example, for geographic co-location
data [19–22], social networks [23], ecological networks [24], brain scans [25–27] and biochemical net-
works [5, 28–30]. Perhaps the closest precursor to our work is that of Butts [23], who developed Bayesian
methods and Gibbs sampling techniques for estimating social network structure from unreliable social
surveys. Priebe et al. [31] have developed similar ideas, incorporating structured priors over networks to
improve inference, an approach that has been echoed in statistics [25–27] and network science [32]. A
key difference between these approaches and our own, however, is that they were developed with partic-
ular measurement processes in mind, whereas our methods can accommodate almost arbitrary ones. The
approach we propose also differs from our own related previous work [3, 33, 34] in putting forward an
estimation algorithm that works essentially automatically with arbitrary models, using ideas borrowed
from the literature on finite mixture models [35, 36].

Looking more broadly, there is also a considerable volume of work that tackles other problems
concerning the reliability of network data, many of which could also be addressed using variants or
extensions of the methods proposed here. The problem of link prediction, for instance, involves predicting
missing edges in partially observed networks and a range of algorithms have been proposed that achieve
good performance [37–41]. The work of Guimerà and Sales-Pardo [38], for instance, uses a model sampled
from a marginal posterior distribution reminscent of our approach, but does not explicitly include any
mechanism for measurement error or attempt to reconstruct the network, focusing instead on the link
prediction problem. Also much studied is the problem of inferring network structure from non-network
data [42], such as time-series [43], gene expression data [44], the spread of information or disease [45, 46]
and various local network features and node properties [47, 48]. A separate literature deals with problems
of network sampling, addressing how choices such as which nodes or edges we measure can affect our
estimates of network properties and how best to make those choices [2, 49–51]. Disambiguation or entity
resolution is the process of accurately identifying the nodes in a network in the presence of potential
sources of error such as duplicate nodes or nodes that have been inadvertently combined [15, 52, 53].
Some methods have also been proposed that aim to perform more than one of these tasks at once, such
as simultaneous link prediction and disambiguation [54]. Finally, there is also a growing literature on
making best estimates of derived network metrics starting from probabilistic representations of network
structure [55–59]. These methods use the kinds of structural estimates we develop in this article as input
to calculations of further quantities of interest, such as centrality measures, path lengths, correlations,
community structure or core decompositions [55, 57].

This article is organized as follows. In Section 2, we first give an overview of the framework we
propose for inference of network structure from unreliable data. Then in Section 3, we describe in
depth two example applications, illustrating the construction of appropriate measurement models and
the practical implementation of the method. In Section 4, we give our conclusions and suggest some
directions for future work. An Appendix gives technical details of the workings of our method.

2. Description of the method

Suppose we have made some measurements of a networked system. They may include direct measure-
ments of network structure, such as measurements of the presence or absence or edges, but they may also
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include other quantities that could have indirect bearing on network structure, such as measurements of
node properties or traits. Our objective is to make the best possible estimate of the structure of the net-
work from these measurements and to do so efficiently and almost automatically, requiring a minimum of
technical effort, so that practitioners can focus on making the measurements and interpreting the results.
In this section, we give a broad overview of the concepts and essential equations underlying our method.
A complete derivation and accompanying technical discussion can be found in Appendix A.

In a nutshell, we posit that there exists some underlying network whose structure affects measure-
ments made on the system of interest. This network is represented by its adjacency matrix A, which is
initially unknown. Our goal is to estimate this matrix. We assume that the observational data depend
on the adjacency matrix but in a potentially noisy way: even exact repetition of the same experiment
could produce different observations. This means that, even though the network has a well-defined and
unambiguous structure, it will not in general be possible to tell exactly what that structure is from the
measurements. To accommodate this uncertainty, we adopt a Bayesian point of view. Instead of inferring
the exact network structure itself from measurements, we instead infer a probability distribution over
possible structures compatible with the observations.

Apart from the data themselves, the only input our method requires of the user is the specification
of a model that represents, in general terms, how the data depend on the network structure. This model
can take a variety of different forms: networks and the experiments used to measure them vary widely,
so no single model applies in all cases. Our method allows the user to specify the model that is most
appropriate to their situation. The model may contain parameters (sometimes many of them), but it is not
necessary to know the values of these parameters: our method automatically infers the best values from
the data.

For the sake of concreteness, we concentrate in this article primarily on the most common situation
encountered in network studies, in which the network is simple, undirected, and unweighted, and the
data consist of individual measurements of the presence or absence of edges. The methods we describe
are applicable to other situations as well, but this one covers many cases of interest and will allow us to
use a more transparent and explicit notation. The measurements themselves can be as simple as observed
interactions between pairs of nodes but can also take more complex forms, such as paths across the
network, time-series, tags associated with relationships or any of a variety of other possibilities. We
encode the measurements in an array X, whose entry Xij contains all the information we have about the
interaction of nodes i and j. We also make a further crucial assumption about the model, namely that
observations of different node pairs are conditionally independent, which in this case means that the
observations Xij of the interaction between i and j depend only on the adjacency matrix element Aij and
not on any other elements. This assumption is not strictly necessary for the method work but, as shown in
Appendix A, it improves the computational efficiency substantially. And, since it is true of most commonly
used models anyway, it is in practice not a significant restriction. There are exceptions: in certain (‘fixed
choice’) social network studies, for instance, participants are limited to naming a maximum number of
friends or contacts, such as 10. This means that every time a participant names a contact, contacts with
other individuals become less likely because the participant has fewer ‘slots’ left to fill, and hence contacts
are (weakly) negatively correlated. In this article, we neglect such dependencies and assume that contacts
are independent. (However, see Refs. [3, 33] for a discussion of methods that can handle dependencies.)

With these assumptions, selecting a model boils down to making three basic choices. The first and
most crucial of these is specifying how the pairwise measurements Xij depend on the underlying network,
as represented by the adjacency matrix A. Specifically, for a given pair of nodes i, j we need to specify
the expected distribution of values Xij for the case where i and j are connected by an edge and for the
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 5

case where they are not. We will write these two distributions respectively as

μij(1, θ) = P(Xij|Aij = 1, θ) (2.1)

and

μij(0, θ) = P(Xij|Aij = 0, θ), (2.2)

where θ denotes any parameters of the distribution. (We will in some cases drop θ from the notation
where it is clearly understood.) We will refer to Eqs. (2.1) and (2.2) as the data model.

The second modelling choice is the specification of the prior probability ascribed to the edge between
i and j. What is the probability that the edge exists before we make any measurements of it? Do all edges
have an equal chance of existing a priori, or are some more likely than others? Again we assume that
different edges are independent, although again this assumption, while computationally convenient, is not
strictly necessary. Mimicking the notation introduced for the data model, we write the prior probability
of an edge between i and j as

νij(1, θ) = P(Aij = 1|θ) (2.3)

and the probability of no edge is νij(0, θ) = 1−νij(1, θ). Again θ collectively denotes the set of parameters
(if any). We call this second set of probabilities the network model.

The third and last modelling choice is the specification of the prior distribution on the parameters θ .
Our framework does not place any restriction on the possible form of the prior on θ . In many cases,
a simple uniform prior works well, but the prior can also be chosen for example to encode specific
knowledge about the system or to rule out unphysical values of the parameters.

Once these three choices are made, the rest of the procedure is essentially automatic. Given the model
choices and a set of measurements, our method will generate a string of pairs (Ar , θr) of networks and
parameters compatible with the measurements. By inspecting these networks and parameters, we can
determine any other network properties we might care about. For example, if we want to determine
whether i and j are connected by an edge, we can inspect the matrix element A(r)

ij for all r and compute

the fraction of the time that A(r)
ij = 1, which gives us (a Monte Carlo estimate of) the posterior probability

of the edge’s existence.
More precisely, the sample networks and parameter sets returned by our algorithm are drawn from

the joint posterior distribution P(A, θ |X), which allows us to compute an estimate of the expected value
of any function f (A, θ) of the network and parameters thus:

〈f (A, θ)〉 =
∑

A

∫
f (A, θ)P(θ , A|X) dθ

� 1

N

N∑
r=1

f (Ar , θr), (2.4)

where N is the number of samples generated.
Our computer code implementing these calculations is freely available online with accompanying

tutorials explaining its use.1

1 The code can be downloaded from https://github.com/jg-you/noisy-networks-measurements.
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6 J.-G. YOUNG ET AL.

3. Examples

To demonstrate how our method operates in practice, we present two detailed case studies. The first
involves a network of animal interactions.

3.1 Network of dolphin companionship

Many animals form lasting social networks, including monkeys, deer, horses, cattle, dolphins and kanga-
roos [16]. Here, we analyse data from Connor et al. [60] of interactions among a small (n = 13) group of
male bottlenose dolphins as they swim in a shallow lagoon. This is a typical example of an animal obser-
vational study that aims to determine social ties indirectly by observing behaviour. Standard techniques
of social network analysis would typically be used to transform the observations into association indices
that quantify the level of interaction between pairs of individuals [61]. These indices, however, can be
hard to interpret and their definition relies on somewhat ad hoc assumptions. Our methods give us a more
principled way to infer connections by interpreting the data as noisy measurements of an underlying
social network.

3.1.1 Basic model In this particular study the recorded data Xij, shown in Fig. 1, represent the number of
times each pair of dolphins is observed swimming in close proximity. We can use these data to reconstruct
the underlying network as follows. First, it is reasonable to assume that the number of interactions between
two dolphins will depend on whether they have a network connection or not. But also we expect there to
be some randomness in the numbers, both because of circumstances and because of observational error.
We thus model the number of interactions as a Poisson random variable with mean λ1 or λ0 depending
on whether there is or is not a network connection, respectively. That is,

μij(0, λ0) = λ
Xij
0

Xij! e−λ0 , (3.1a)

μij(1, λ1) = λ
Xij
1

Xij! e−λ1 . (3.1b)

We assume that λ1 > λ0, that is, that individuals interact more often if they have a network connection
than if they do not.

Fig. 1. Data on interactions among a group of dolphins, from Connor et al. [60]. Thirteen male dolphins were observed as they
swam in a shallow lagoon and tabulations were made of pairs that swam together. (a) Observed frequency of interaction for each
pair. (b) Histogram of frequencies.
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 7

Fig. 2. Reconstruction of the network of dolphins from the data shown in Fig. 1. (a) Two examples of sampled network structures.
(b) Matrix of posterior edge probabilities, obtained by averaging over 4000 network samples. Entries in the matrix corresponding
to the edges highlighted in panel (a) are shown in matching colours.

We also need to choose our network model and prior on the model parameters. Having no prior
information about the probabilities of individual network edges, we assume that all edges are a priori
equally likely, which implies

νij(0, ρ) = 1 − ρ, (3.2a)

νij(1, ρ) = ρ. (3.2b)

where ρ is the probability of an edge.
For the priors on the parameters, we make minimal assumptions. For ρ, which is a probability, we

assume a uniform prior on the interval [0, 1]. For λ0 and λ1, which have semi-infinite support, we cannot
use a uniform prior or the posterior distribution would become improper. So, instead, we assume a slowly
varying probability with a wide range of plausible values, specifically a semi-normal distribution (i.e. the
right half of a normal distribution centred on zero) with large variance:

P(λk) ∝ e−λ2
k/2σ2

, (3.3)

where σ � 1 is a fixed hyperparameter and P(λk) = 0 if λk < 0. In our calculations, we use σ = 100.
With the model specified, we now run the algorithm described in Appendix A and obtain a series

of samples (Ar , θr) from the joint distribution P(A, θ |X), where θ in this case collectively refers to the
parameters λ0, λ1 and ρ, and θr is one realization of these parameters. Two examples of sampled network
structures are shown in Fig. 2a, out of thousands generated. As the figure shows, the two structures are
similar but not identical. This is expected: we should see variability from sample to sample. When looking
over the entire sample set, for example, the edge between nodes 9 and 10, highlighted in orange, appears
almost always, whereas the edge between 1 and 8, in blue, appears only rarely. To capture this variability,
we average over samples and compute the posterior probability of every edge as the fraction of samples
in which the edge occurs. The result is shown in matrix form in Fig. 2b. Comparing with Fig. 1, we see
that these probabilities are quite different from the distribution of number of interactions between dolphin
pairs. Moreover, while the numbers of interactions span a wide range of values, the probabilities of edges
are clustered around zero and one. This is good news. Edge probabilities near zero and one indicate edges
about which we are relatively certain, either that they exist or that they do not. Thus, we have turned a
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8 J.-G. YOUNG ET AL.

Fig. 3. Statistics of samples drawn from the posterior distribution P(λ0, λ1, ρ|X) for the data shown in Fig. 1 and the measurement
model given in Eqs. (3.1)–(3.2) over four runs with randomly chosen initial conditions. Only 500 of the 4000 total samples taken
are shown for the sake of visual clarity. (a) Logarithm of the posterior probability, with different runs separated by vertical dotted
lines. The colour of the points varies from left to right for easier comparison with panel (b). (b) Pair plot showing the relation
between sampled values of parameters, as well as the distribution of individual parameters. We highlight a subset of samples with
colours matching panel (a).

dataset with considerable variability into a network structure about which we have high confidence. We
discuss this point further below.

In conjunction with these estimates of the network’s structure, we also compute estimates of the
parameters θ , by averaging the parameter samples, just as we did with the network samples. For instance,
we find that λ0 = 0.62 and λ1 = 14.3 (with 95% credible interval (CI) of [0.06.0.98] and [10.8, 16.8],
respectively), meaning that dolphin pairs interacted an average of 14.3 times during the experiment if
they shared a network connection but only 0.62 times if they did not. In other words, the effect of network
connections is very pronounced and highly statistically significant. We also find that ρ = 0.28 (95% CI
[0.18, 0.43]), indicating that the network is quite dense. (This would be an unusually high value in human
social networks, although the network in this example is small, which tends to increase density.)

3.1.2 Sampling quality and goodness of fit While these results are promising, there is further work to
be done if we are to be confident in them. In particular, as is standard with Bayesian calculations, there
are two specific things we need to check [62]. First, we need to be sure that the Monte Carlo algorithm
is sampling correctly from the posterior distribution and, second, we need to test whether our proposed
model is in fact a good fit to the data.

In Monte Carlo calculations of this kind the posterior probability distribution is typically rugged,
meaning it has multiple local optima, and the sampling algorithm can as a result get stuck for periods
of time in suboptimal portions of the sampling space. To test for this issue, we plot in Fig. 3a the log
probability of our samples as a function of time over four different runs of the algorithm. The plot shows
that the distribution of values appears roughly consistent within each run and across different runs, which
we take as a sign that the samples have not failed in obvious ways. In Fig. 3b, we compare how the
sampled values for the parameters λ0, λ1 and ρ relate to one another. These plots, colloquially known as
pair plots, are conventional in Bayesian analysis. In addition to showing the distribution of values for the
individual parameters on the diagonal (which are more informative than the simple averages reported in
the text above), these plots can help verify the quality of the samples and provide some sanity checks.
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 9

Fig. 4. Posterior-predictive tests of the model used for the dolphin network. (a) Average predicted number of interactions between
dolphin pairs as a function of the actual observed number of interactions, for five random data sets generated from the model
(R2 = 0.50). Colours indicate the numbers of pairs of dolphins with each number of predicted/observed interactions across five
random replications of the data. (b) Scatter plot of discrepancy values. Each point in this plot corresponds to one of 500 sets of
parameter values, selected at random from a total of 4000 such sets drawn from the posterior distribution P(λ0, λ1, ρ|X) during
the calculation. Sets having higher model–model discrepancy D(X̃ , λ0, λ1, ρ) than data–model discrepancy D(X, λ0, λ1, ρ) are
highlighted in blue, above the diagonal. The fraction of such sets gives us the p-value, which in this case is p = 0.136.

In our case, the plots reveal that all the samples come from approximately the same region of parameter
space regardless of the different initialization of the four runs, which tallies with the uniform sample
quality found in Fig. 3a and gives further evidence that the algorithm is sampling consistently.

Another function of pair plots is to diagnose problems with the model specification. Models of the
kind we consider here can for instance possess symmetries, such as invariance under the interchange
of edges and non-edges, which can cause problems when averaging chains that break the symmetry
differently [35]. Such symmetries are easy to visualize in a pair plot, though we see none in Fig. 3b. (We
have imposed λ1 > λ0 to avoid them.) A model can also suffer from parameters that are not identifiable,
for example when two or more parameters can be combined into one. The pair plot alerts us to such issues
because the parameter values will be perfectly correlated, but again we see no such issues in Fig. 3b.

Having confirmed that the samples are plausibly drawn from a correctly specified posterior distribu-
tion, the other thing we need to check is whether our model is actually a good fit to the data. If the model
is a poor one, then even the best fit it provides may not actually be a good fit. To test the goodness of fit,
we use two Bayesian tests of the type known as posterior-predictive assessments. (See Appendix A and
Refs. [18, 63] for discussions.) In these tests, we use the data model P(X|Â, θ̂ ) with parameter values Â
and θ̂ drawn from our Monte Carlo sample to generate new data X̃, as if we were making measurements
on a system that obeyed the fitted model exactly. Then, we compare these new data to the original inputs.
If the model is a good fit, the two should look similar.

An example of such a comparison is shown in Fig. 4. Figure 4a shows the number of times a pair of
dolphins interacts in the simulated data as a function of the number of times they are observed to interact
in the original data, in five artificial data sets X̃ generated as above. If data and model agreed well, most of
the points in this scatter plot would concentrate along the diagonal line, but in this case they do not. This
is our first indication that the fit we have found may not be as good as we would like. We will see shortly
how to make the fit much better, but let us proceed for the moment with what we have as an illustration
of our goodness-of-fit analysis.

To more accurately quantify the performance of the model, we can calculate a discrepancy [63]:

D(X, θ) =
∑

ij

Xij log
Xij

〈X̃ij(θ)〉 , (3.4)
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10 J.-G. YOUNG ET AL.

where 〈X̃ij(θ)〉 is the average of the synthetic data generated from the model, with parameter values θ .
The discrepancy is essentially a Kullback–Leibler divergence between the observed and synthetic data
for one sampled value of the parameters. It functions in this situation as a goodness-of-fit measure: the
smaller the discrepancy, the closer the synthetic data are to the input.

The discrepancy is not very informative by itself, however, since it is not clear what kind of values
we should expect to see. For example, even if the model is an excellent fit, we should not expect the
discrepancy to be zero, since the randomness of both the data and the model mean that they are unlikely
to agree exactly. To obtain a point of comparison, therefore, we compute discrepancies between a large
number of pairs of simulated datasets drawn from realizations of the model with the same parameter values
used for the observed data. If the model were correct, so that simulated and observed data have the same
distribution, then these values would tell us the typical magnitude we should expect the discrepancy to
have. If the values are mostly smaller than the observed discrepancy then it indicates the model is unlikely
to be correct; if they are larger then the model is not ruled out. The fraction of generated discrepancy values
that are larger than the observed discrepancy gives us the p-value for the model, that is, the probability
that the observed discrepancy would have been generated if the model were correct.

Note that the use of the p-value in this situation is different from the way it is used in traditional
frequentist statistics, where it represents the probability of getting a particular observed value if a null
hypothesis were true. In the traditional scenario, a small p-value leads us to reject the null hypothesis, and,
since this is often the goal of an experiment, small p-values are ‘good’. In the present case, the p-value is
applied to the model we are fitting (there is no null/alternative hypothesis) and it just counts the fraction
of artificial datasets for which we find discrepancies more extreme than the value found when fitting the
model to the true data. So in this situation small p-values are ‘bad’.

Figure 4b shows values of the discrepancy for both artificial and real data, for 500 sampled values of
the model parameters. Instances where the artificial discrepancy is greater than the observed one appear
above the diagonal in the plot and the fraction of such points tells us the p-value. In this case, we find
p = 0.136. While it is not appropriate to apply arbitrary cutoffs to this (or any) p-value [63], the value is
not as high as we would like it to be, and though we cannot completely rule out the model the evidence
suggests that the fit is not ideal.

3.1.3 Improved model What can we do to improve the fit? The standard approach is to adopt a more
elaborate model that is capable of representing a wider range of data distributions. In the model we have
used so far connections are binary: dolphin pairs either have a connection or they do not. We can create
a more nuanced model by allowing three levels of connection, corresponding to no tie, a weak tie or a
strong tie. Denoting the three levels by adjacency matrix elements Aij = 0, 1 and 2, we introduce a new
distribution for Xij when Aij = 2 which is Poisson as before but with mean λ2:

μij(2, λ2) = λ
Xij
2

Xij! e−λ2 (3.5)

where λ2 ≥ λ1 ≥ λ0, and the prior of Eq. (3.2) becomes

νij(0, ρ) = ρ0 = 1 − ρ1 − ρ2, (3.6a)

νij(1, ρ) = ρ1, (3.6b)

νij(2, ρ) = ρ2. (3.6c)

The fitting and model verification procedures follow the same lines as previously.
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 11

Fig. 5. Network inference with multiple edge types for the data shown in Fig. 1 and the measurement model given in Eqs. (3.1)–
(3.6). The estimated mean numbers of interactions are λ0 � 0.02 when there is no edge between a pair of dolphins, λ1 = 5.13
when the pair shares a weak tie, and λ2 = 21.97 when they share a strong one. The corresponding prior probabilities of edge types
are ρ0 = 0.58, ρ1 = 0.28 and ρ2 = 0.14. (a) Posterior predicted number of interactions between dolphins as a function of observed
number for five random datasets generated from the fitted model (R2 = 0.82). The highlighted regions correspond, from left to
right, to dolphins having no tie, a weak tie and a strong tie. (b) The inferred structure of the network, with weak ties represented
by thin grey edges and strong ties by thicker blue edges. (Nodes 1 and 2 are connected by a thin blue line to reflect the fact that the
calculation is ambiguous about the type of this tie.)

This modified model now fits the data significantly better, as shown in Fig. 5a. It divides the observed
numbers of pair interactions into three clear groups centred around values of about 0, 5 and 25, and the
p-value is now a very respectable 0.722, indicating that there is no statistical basis to reject this model at
all: the model truly captures the structure of the observed behaviour. Indeed a p-value significantly larger
than this could be a sign of problems, indicating overfitting. Unless the distribution of the discrepancy is
strongly skewed, the expected p-value will normally be around 0.5 when the model is a perfect fit.

Having found a model that fits the data well, we examine the inferred network structure, which is
shown in Fig. 5b. The network has three disconnected subgroups of dolphins, two comprised of strong
connections only and one, the largest of the three, having a mix of strong and weak connections. The
posterior probabilities on all of the interaction types are close to one, indicating high confidence in the
structure of the network. For instance, the model predicts that nodes 8 and 9 are not connected with
probability 0.99(6), that nodes 7 and 8 share a strong connection with probability 0.99(9), and that nodes
1 and 8 share a weak connection with probability 0.99(9). There is just one pair of nodes (1 and 2)
whose connection is hard to classify. The model indicates that the tie between these nodes is either
weak or strong, with probabilities 0.51(4) and 0.48(5), respectively. This pair of dolphins was observed
swimming together 12 times, a number that falls between the weak and strong domains in the fitted model
(see Fig. 5a).

3.2 Friendship network of school students

For our second example, we revisit a network analysed previously using different methods in Refs. [3, 33],
a network of friendships between high-school students taken from the US National Longitudinal Study
of Adolescent to Adult Health (the ‘AddHealth’ study). Although the method proposed in this article
is mathematically more complex than that of [3, 33], it is arguably easier to apply since our analysis
pipeline performs most of the calculation automatically. The most demanding step is the formulation of
the model, but once we have a plausible model the rest of the process is straightforward and mechanical.

The AddHealth study is a large study of networks of social contact among students in schools across the
USA. Students in participating schools were asked to identify their friends and the basic unit of resulting
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12 J.-G. YOUNG ET AL.

data is a friendship nomination: one student says they are friends with another. Our data matrix X in this
case is thus a non-symmetric one: Xij = 1 if i names j as a friend and 0 otherwise. There is no guarantee
that j will also name i and in fact there are many instances in which reported friendships only run in
one direction. If we assume that friendship is fundamentally a bidirectional interaction, then this lack of
symmetry indicates that the data are necessarily unreliable.

As is done in Refs. [3, 23, 33], we fit the data using a model in which each student i has an individual
true-positive rate αi and false-positive rate βi. The true-positive rate is the probability that i names as a
friend another student who is in fact a friend, as determined by the adjacency matrix. The false-positive
rate is the probability of naming someone who is not actually a friend. We explicitly allow for different
true- and false-positive rates for different individuals, since it is widely accepted that survey respondents
vary in the accuracy of their responses.

In the notation of this article, the equations for the model are:

μij(1, αi, αj) = α
Xij
i (1 − αi)

1−Xijα
Xji
j (1 − αj)

1−Xji , (3.7a)

μij(0, βi, βj) = β
Xij
i (1 − βi)

1−Xijβ
Xji
j (1 − βj)

1−Xji . (3.7b)

For instance, supposing that i and j truly are friends, the probability of i saying that they are (Xij = 1)
while j says they are not (Xji = 0) is μij(1) = αi(1 − αj). Conversely, if they are not in fact friends then
we instead get μij(0) = βi(1 − βj).

For the priors we again make the assumption of Eq. (3.2) that all edges are a priori equally likely,
and assume a uniform prior on the edge probability ρ and a uniform distribution over all values of αi

and βi that satisfy βi < 1
2 < αi. (One could simply assume a uniform prior on both αi and βi in the

range [0, 1] but this leaves some ambiguity in the model because of the inherent symmetry between edges
and non-edges: if we exchange the values of all αi and all βi and set ρ to 1 − ρ the model remains the
same. By making the reasonable assumption that αi > βi, we break this symmetry. The assumption that
βi < 1

2 < αi is not strictly necessary, but turns out to be helpful for narrowing down the parameter space
and hence improving the speed and convergence of the calculation [23].)

Figures 6 and 7 show the results of fitting this model to the data for a single school from the AddHealth
data set. We use one of the smaller schools as our example, with 521 students who completed a survey and
2182 declared ties, primarily in order to make visualization of the results easier. We find that the Monte
Carlo algorithm converges well and gives samples that appear to accurately characterize the posterior

Fig. 6. Goodness of fit testing for the AddHealth model. Each point in this plot corresponds to a random parameter set drawn
from the posterior distribution P(α, β, ρ|X). Samples associated with a higher model–model discrepancy D(X̃ , θ) than data–model
discrepancy D(X, θ) appear above the dotted line, indicating a good fit between data and model.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/6/cnaa046/6161493 by guest on 10 M
arch 2025



BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 13

Fig. 7. Inference of a school friendship network from noisy data. (a) The 521 nodes in this figure represent the students at a single
school in the AddHealth study and inferred friendships are shown as edges whose thickness indicates the estimated probability that
they exist. The size and colour of the nodes indicates the estimated precision of friendship reports by the corresponding individual,
that is, the fraction of their reported friendships that are inferred to actually exist. Darker shades indicated less precise individuals
and correspond to the shades in the histogram in panel (c). The average values of the parameters of the model are 〈α〉 � 0.7605,
〈β〉 � 0.0065 and 〈ρ〉 � 0.004. (b) The distribution of the probability of existence of edges. Many values are close to zero or one,
indicating confidence that the corresponding edge does or does not exist, although a significant number fall at intermediate values.
(c) The distribution of estimated precision values for participants.

distribution. Figure 6 shows discrepancy values in a manner analogous to Fig. 3b for the dolphin network
and all values are well above the diagonal, indicating a good fit to the data.

The inferred network structure is shown in Fig. 7a. By contrast with the dolphin network example,
the posterior probabilities of edges now vary more widely, as represented by the thickness of the edges in
the figure. Figure 7b shows the distribution of edge probabilities as a histogram and many probabilities
are again close to either 1 or 0, indicating a high degree of certainty that these edges either exist or do
not, but there are also a significant number of edges with intermediate probabilities, edges about which
we are less certain.

The fit also returns values of the true- and false-positive rates αi and βi for each node, which allow
us to make quantitative statements about how accurately each individual reports his or her friendships.
The average value of αi over all individuals and all samples is 0.76, meaning that an estimated 24%
of friendships are going unreported. The average false-positive rate is 0.0065, which sounds small but
this result is somewhat misleading. The network is very sparse, meaning that almost all edges that
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14 J.-G. YOUNG ET AL.

could exist do not. It takes only a small fraction of false positives among these many non-edges to
generate a significant number of errors. Arguably a more informative measure of false positives is the
precision, which is the fraction of reported friendships that are actually present and is given in this
case by ραi/[ραi + (1 − ρ)βi] [33]. The distribution of values of the precision is shown in Fig. 7c and
ranges from a little under 0.2 to a little over 0.75, indicating that in fact a significant fraction of reported
friendships—anywhere from 25% to 80%—are false positives.

These results are largely in agreement with previous work [33], although there are modest differences
in estimated parameter values and network structure, due to the different methodology. We would argue
that the fully Bayesian methodology employed here is more correct in that it accounts for intrinsic uncer-
tainty in the parameter values. The methodology of [33], which makes use of an expectation-maximization
(EM) algorithm, might be described as ‘semi-Bayesian’, computing a full posterior distribution over the
network structure but relying on point estimates of the parameters. Because the model used here is a
large one, having O(n) parameters, we expect there to be significant uncertainty in the parameter values,
which is captured by our Bayesian sampling method. That said, in practice the two methods do lead to
qualitatively consistent conclusions. The key benefits of the current approach in this case are that it is
simpler to implement using standard software, is formally more correct, and incorporates a natural means
for checking the goodness of fit.

One potential issue with the results is the fact that the discrepancy values in Fig. 6 are all well above
the dotted line, indicating close fits of the model to the data and a p-value near 1. A p-value this large can
be a warning sign for overfitting, which is a possibility given the large number of parameters in the model.
Such an issue could not be diagnosed with the methods previously used in Refs. [3, 33], but our approach
makes this possible. One could address the problem by changing the model, say by using a more complex
model in which instead of fitting the true- and false-positive parameters we instead draw them from a
hyperprior distribution, such as a beta distribution, with an associated (small) set of hyperparameters
that are fit using Monte Carlo. This approach can reduce the chances of overfitting and would be a good
direction for future work.

4. Conclusions

In this article, we have introduced a general Bayesian framework for reconstructing networks from
observational data in the case where the data are error prone, even when the magnitude of the errors is
unknown. Our methods work by fitting a suitable model of the measurement process to the data and there
is a large class of models that is both expressive enough to represent real data sets accurately and yet
simple enough to allow for easy and automatic statistical inference. The output of the fitting process is a
complete Bayesian posterior distribution over possible network structures and possible values of model
parameters. We have demonstrated our methods with two case studies showing how to formulate suitable
models, fit them, assess goodness of fit and infer reliable estimates of network structure.

With this work, we hope to promote the adoption of more rigorous methods for handling measurement
error in network data in a principled manner. The methods we propose not only achieve this but do so in
a manner that is straightforward and requires a minimum of technical expertise on the part of the user.
Practitioners can use the framework we propose to apply appropriate, application-specific models to their
data and obtain estimates of network structure in a matter of minutes.
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A. Methods

In this appendix, we describe the mathematical and statistical foundations of our method in detail.

A.1 Generative models of measurement

Consider an experimental setting in which we have measurements X of a network’s structure. The mea-
surements could be as simple as a number of observed interactions between pairs of nodes, but could
also incorporate time-series, vector measurements, etc. In general these measurements do not tell us the
exact structure of the network, but instead give us indirect and potentially noisy information. Our goal is
to make the best estimate we can of the true network structure given the measurements.

In the general framework we consider here, two nodes i and j can share connections of various types.
In the simplest case there are just two types: nodes can be either connected by an edge (type 1) or not
(type 0). In a more complex three-type case, the connection could be absent (type 0), weak (type 1), or
strong (type 2) and so on. For a network of n nodes we encode these connections by an n × n adjacency
matrix A where the matrix element Aij records the type of connection between nodes i and j. We can also
represent directed networks using an asymmetric adjacency matrix with Aij being the type of the directed
connection from j to i and Aji being the type from i to j.

Our approach rests on the hypothesis that the matrix X of pairwise measurements is dependent, in a
probabilistic fashion, on the adjacency matrix A. Both A and X can be either symmetric (for undirected
networks) or asymmetric (for directed ones) and they need not be of the same type. In friendship net-
works, for example, the symmetric relationship of being friends is commonly probed using asymmetric
measurements (person i says they are friends with person j).

It is this dependence between network and measurement that we exploit to estimate A from X. We
formalize the relation using a generative model that specifies the probability P(X|A, θ) of making the
measurements given the network, plus optionally some additional parameters represented collectively
by θ . Then, applying Bayes’ rule, we can write the probability of the unknown quantities A and θ given
the measurements as

P(A, θ |X) = P(X|A, θ)P(A|θ)P(θ)

P(X)
. (A.1)

Our goal is to use this equation to infer the network structure A from the measurements X and to quantify
the errors we might make in doing so.
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16 J.-G. YOUNG ET AL.

A.2 A flexible class of models

To further simplify the discussion and improve the efficiency of the numerical calculations, we make
some additional assumptions about the model, while keeping the approach as broad as possible to allow
users to easily adapt it to various types of data and experimental settings.

Of the four probabilities that appear on the right-hand side of Eq. (A.1) one of them P(X) is a
constant (since it depends only on X which is fixed by the experiment) and hence will play no part in our
calculations. The others must be specified to define our model. We refer to these three probabilities as the
data model P(X|A, θ), the network model P(A|θ) and the prior on the parameters P(θ). Let us consider
each of these in turn.

A.2.1 Data model The data model P(X|A, θ) specifies the probability of making a particular set of
measurements X given the network and the model parameters. In specifying this probability, we will make
two key assumptions. First, we assume that the measurement Xij is only influenced by the corresponding
element Aij of the adjacency matrix and not by any other elements. Second, we assume that, conditioned on
the network structure A and parameters θ , the measurements Xij for different node pairs are independent.
Thus, for instance,

P(Xij, Xkl|A, θ) = P(Xij|Aij, θ)P(Xkl|Akl, θ).

The notation here is a bit unwieldy, so for clarity we introduce the notation μij(Aij, θ) to denote the
probability P(Xij|Aij, θ) of making the measurement Xij given the type Aij of the connection between
nodes i and j and given the parameter values θ . (Where the meaning is clear we may drop the explicit
dependence on θ to simplify our expressions.) With this notation and our assumption of conditional
independence, the probability P(X|A, θ) for the data model is simply

P(X|A, θ) =
∏
(i,j)

μij(Aij, θ). (A.2)

The product
∏

(i,j) is taken over all unordered pairs of nodes when the network is undirected and over all
ordered pairs when it is directed.

Table A1 gives a selection of possible forms for the data model for networks with only a single edge
type. Generalization to multiple edge types is straightforward. (See also Ref. [33] for a discussion of a
range of models.)

A.2.2 Network model The network model P(A|θ) can be thought of as our prior expectation of what
the network should look like, before we make the measurements. By analogy with the factorized form of
the data model in Eq. (A.2), we consider network models with the factorized form

P(A|θ) =
∏
(i,j)

νij(Aij, θ), (A.3)

where we define νij(Aij, θ) in a similar manner to μij(Aij, θ), as the prior probability P(Aij|θ) that nodes i
and j share a connection of type Aij, given the parameters θ . Many standard network models can be written
in this form, including the Erdős–Rényi random graph, the configuration model, and the stochastic block
model. Some examples of network models are given in Table A2 and Ref. [33].
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BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 17

A.2.3 Prior on the parameters The third component of our generative model, the prior P(θ) on the
parameters, is the simplest. Our method does not place any significant constraints on the form of this
probability, so one is free to choose almost any form appropriate to problem at hand, ranging from simple
flat priors or factorized forms to ones that incorporate complex correlations between parameters. The only
stipulation we make is that the parameters should be continuous-valued variables (not discrete-valued),
which allows for more efficient sampling procedures (see Section A.4).

A.3 Inference in theory

Gathering the elements defined above and substituting them into Eq. (A.1) we obtain the complete joint
posterior distribution for the model:

P(A, θ |X) = P(X|θ , A)P(A|θ)P(θ)

P(X)
,

∝ P(θ)
∏
(i,j)

μij(Aij)νij(Aij). (A.4)

This distribution tells us the probability of a network structure and a set of parameter values given
the observed measurements. From it, we can derive a variety of further useful quantities, such as the
probability of the network structure independent of the parameters, which is given by

P(A|X) =
∫

P(A, θ |X) dθ . (A.5)

Even more useful, perhaps, is the probability of having an edge of a given type between two specific
nodes i, j:

Table A1 Example data models for undirected networks with one edge type. Here, Nij represents the
number of times the node pair i, j was measured and Xij represents how many of those times an edge was
observed to exist.

Model Parameters Data probability

Binomial with
uniform errors

True-positive rate α ∈ [0, 1] μij(1) = αXij (1 − α)Nij−Xij

False-positive rate β ∈ [0, 1] μij(0) = βXij (1 − β)Nij−Xij

Binomial with
node-dependent
errors

True-positive rate αi ∈ [0, 1] for node i μij(1) = α
Xij
i (1 − αi)

Nij−Xij

False-positive rate βi ∈ [0, 1] for node i μij(0) = β
Xij
i (1 − βi)

Nij−Xij

Poisson with
uniform errors

Means λ1, λ0 for edges and non-edges
μij(1) = λ

Xij
1 e−λ1/Xij!

μij(0) = λ
Xij
0 e−λ0/Xij!

Poisson with
node propensity

Normalized node propensity 0 < ηi < 1
(
∑

ηi = 1) and base rates λ1, λ0

μij(1) = (λ1ηiηj)
Xij e−λ1ηiηj/Xij!

μij(0) = (λ0ηiηj)
Xij e−λ0ηiηj/Xij!
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18 J.-G. YOUNG ET AL.

Table A2 Network models for the prior probability νij of an edge between nodes i and j.

Model Parameters Edge probability

Random graph Edge probability ρ νij(1) = ρ

‘Soft’ configuration model Node pseudo-degree λi νij(1) = 1/(1 + e−λiλj )

Stochastic block model Node i belongs to group gi and edge
probability between groups r and s is ωrs

νij(1) = ωgigj

Random graph with
multiple edge types

Probability of type-k edge ρk νij(k) = ρk

Poisson multigraph Mean edge number ω νij(k) = ωke−ω/k!

P(Aij = k|X) =
∫

P(Aij = k, θ |X) dθ

∝
∫

μij(k, θ)νij(k, θ)P(θ) dθ , (A.6)

where we have used Eq. (A.4).
If we instead want to learn something about a parameter φ ∈ θ then we can compute its distribution

as

P(φ|X) =
∑

A

∫
P(θ ′, φ, A|X) dθ ′, (A.7)

where θ ′ is the parameter set with φ excluded.
Each of these quantities can be considered a special case of the posterior average of a general

function f (A, θ) of network structure and parameters, thus:

〈f (A, θ)〉 =
∑

A

∫
f (A, θ)P(θ , A|X) dθ . (A.8)

There are a number of approaches we could take to computing expectations of this form [35]. One pos-
sibility is to use an expectation–maximization (EM) algorithm to compute the distribution over potential
networks P(A|θ , X) as well as a point estimate of θ [3, 33]. Alternatively, following [32, 64], we can inte-
grate out the parameters θ analytically to derive the marginal distribution P(A|X) over the networks alone.
However, neither of these approaches is in line with our goal of providing near-automatic inference for
arbitrary models, the EM approach because it calls for the solution of (often non-linear) equations specific
to the model and the marginal-based approach because it works only for models amenable to closed-
form integration. The EM approach moreover gives only point estimates of θ and therefore provides no
estimate of parameter uncertainty.

Instead, therefore, we employ a generalization of a method introduced in [34], which harnesses
standard mixture-modelling techniques, adapting them to the network context. The method can be viewed
as a general sampler for models in the family of Refs. [3, 23, 32, 33, 64].

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/6/cnaa046/6161493 by guest on 10 M
arch 2025



BAYESIAN INFERENCE OF NETWORK STRUCTURE FROM UNRELIABLE DATA 19

A.4 Inference in practice

The general idea behind our method is to compute expectations of the form (A.8) in two manageable
steps by factorizing the joint posterior as

P(A, θ |X) = P(A|θ , X)P(θ |X). (A.9)

This factorization tells us that we can draw samples from the joint posterior by first sampling sets of
parameter values θ from the marginal distribution P(θ |X) and then sampling networks A from P(A|θ , X)

with these parameter values. If we sample m different parameter sets and then n networks for each set,
we end up with mn network/parameter pairs, which we number r = 1 . . . mn. Then we can estimate the
average in Eq. (A.8) as

〈f (A, θ)〉 =
∑

A

∫
f (A, θ)P(A|θ , X)P(θ |X) dθ

� 1

mn

mn∑
r=1

f (Ar , θr). (A.10)

This expression is completely general and holds for any posterior, but for the class of models we consider
here there are, as we now show, particularly efficient methods that can help us quickly generate the
samples we need.

A.4.1 Generating parameter samples The first step of the sampling algorithm draws values of the
parameters θ from the marginal distribution

P(θ |X) =
∑

A

P(θ , A|X), (A.11)

where the sum runs over all the possible matrices A. For models with the factorized form (A.4), we have

P(θ |X) ∝ P(θ)
∑

A

∏
(i,j)

μij(Aij, θ)νij(Aij, θ)

∝ P(θ)
∏
(i,j)

∑
k

μij(k, θ)νij(k, θ). (A.12)

Modern probabilistic programming languages make it easy to generate random samples from factorized
marginals of this kind. Our code is written in the probabilistic language Stan, which implements the
technique known as Hamiltonian Monte Carlo to generate samples automatically and efficiently—see
Refs. [65, 66] for an introduction. Evaluating P(θ |X) involves a product over pairs (i, j) of nodes, of
which there are O(n2), meaning that in general generating a sample takes O(n2) time. In many cases,
however, the time complexity can be reduced to O(n) by pooling terms in the product, as discussed in
Section A.6.2.
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20 J.-G. YOUNG ET AL.

A.4.2 Generating network samples Given sampled values θ1, . . . , θm of the parameters, the next step
is to generate samples of the network A from the distribution P(A|θ , X) for these parameter values. This
is straightforward for the factorized model assumed here, since node pairs are independent and we can
sample each one separately. Specifically, using Eqs. (A.4) and (A.12), we have

P(A|θ , X) = P(θ , A|X)

P(θ |X)
=

∏
(i,j) μij(Aij)νij(Aij)∏

(i,j)

∑
k μij(k)νij(k)

=
∏
(i,j)

Qij(Aij, θ), (A.13)

where

Qij(k, θ) = μij(k)νij(k)∑
k′ μij(k′)νij(k′)

(A.14)

is the posterior probability that nodes i and j are joined by an edge of type k. Generating networks is
simply a matter of drawing a value Aij = k for each node pair independently from the distribution over k
implied by Qij(k). Again, naively this takes time O(n2) for all node pairs, but on a sparse network the
speed can be improved, see Sec. A.6.1.

To estimate the average 〈f (A, θ)〉, we generate a series of parameter sets θ using Eq. (A.12) and for
each of these a series of networks using Eq. (A.13), then evaluate the average with Eq. (A.10).

A.5 Assessing goodness of fit

The method described above is simple, efficient and often gives good results. As described in the main
text, however, the method can fail if the model itself is faulty—if the model is a poor representation of
the system, failing to fit the data for any parameter values. It is important therefore to verify that the fit
between model and data is good, which can be done with the standard technique of posterior-predictive
assessment. As described in the main text, this involves generating synthetic data X̃ from the distribution
implied by the fitted model:

P(X̃|X) =
∫ ∑

A

P(X̃|θ , A)P(θ , A|X) dθ . (A.15)

This distribution weights all the possible parameters θ and networks A with their appropriate posterior
probabilities and tells us the probability that a new data set X̃ would have if it were truly generated by the
model with these inputs. The idea of the posterior-predictive assessment is to compare these synthetic
data with the original input X. If the two look alike then the model has captured the data well; otherwise,
it has not.

There are a number of ways to quantify the similarity of X̃ and X. For instance, one can compute the
average

〈X̃ij〉 =
∑

X̃

P(X̃|X)X̃ij, (A.16)
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and compare the result with Xij. Visualizing the matrix of residues 〈X̃〉 − X, the distribution of these
residues, or how they depend on Xij allows one to easily spot systematic issues with the model [18].
Such calculations are not costly in practice: the distribution (A.15) is just an average of a known function
of A, θ over the posterior distribution and has the same general form as Eq. (A.10), so it can be evaluated
numerically by the same methods. In this particular case, however, we can do even better, skipping the
network sampling step altogether and making an estimate directly from the parameter samples. To do
this, we write the distribution of Eq. (A.15) in the form

P(X̃|X) =
∫ ∑

A

P(X̃|θ , A)P(A|θ , X)P(θ |X) dθ

=
∫

P(θ |X)
∑

A

∏
(i,j)

μ̃ij(Aij, θ) Qij(Aij, θ) dθ

=
∫

P(θ |X)
∏
(i,j)

∑
k

μ̃ij(k, θ) Qij(k, θ) dθ , (A.17)

where have used Eqs. (A.2) and (A.13) in the second line, and μ̃ij(k, θ) is the probability of generating a
synthetic measurement X̃ij given that (i, j) is an edge of type k. This expression is now independent of A
and only requires an average over θ to evaluate.

Using this expression for P(X̃|X), we can write the average 〈X̃ij〉 in Eq. (A.16) as

〈X̃ij〉 =
∫

P(θ |X)
∑

k

〈
μ̃ij(k, θ)

〉
Qij(k, θ) dθ , (A.18)

which we evaluate numerically as

〈X̃ij〉 � 1

m

m∑
r=1

∑
k

〈
μ̃ij(k, θr)

〉
Qij(k, θr). (A.19)

Note that
〈
μ̃ij(k, θr)

〉
usually has a simple closed form, since it is just the mean of X̃ij within the data model

with parameters θr .
A visual inspection of the residues between X̃ and X is often enough to reveal issues with goodness of

fit, but one can carry out a more formal model assessment using any of a variety of discrepancy measures
that quantify the distance between the synthetic data X̃ and the original X [63]. The average value of
such a discrepancy will always be greater than zero, since one does not expect the synthetic and original
data to agree perfectly even with a perfect model. To obtain a baseline against which discrepancy values
can be compared, we therefore compute the discrepancy between synthetic measurements X̃ and their
associated predictions, calculating a model-versus-model discrepancy distribution.

In the calculations presented here, we make use of the log-likelihood ratio discrepancy:

D(X, θr) =
∑
(i,j)

Xij log
Xij

〈X̃ij(θr)〉
, (A.20)

where 〈X̃ij(θr)〉 is evaluated using a single term of the sum appearing in equation Eq. (A.19), with the
sampled parameter values θr . This discrepancy is reminiscent of a Kullback–Leibler divergence, with
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the primary difference being that it compares unnormalized quantities rather than normalized probability
distributions. That said, the norm of the two sets of measurements should be similar, since the whole
purpose of the calculation is to reproduce the original observations. Hence, one can usually interpret the
discrepancy in more or less the same way as a divergence: the smaller the divergence the better the fit
(although values slightly less than zero can occur, which is not true of a true divergence).

We compute the distribution of the discrepancy and the reference distribution X̃ simultaneously using
the method introduced in Ref. [63]. We go through each network/parameter sample Ar , θr and generate a
single realization X̃ of the synthetic data from the data model, then compute the two discrepancies D(X̃, θr)

and D(X, θr) using Eq. (A.19). From the resulting sets of discrepancy values one can then compute the
p-value p = P[D(X, θr) > D(X̃, θr)], which is the fraction of artificial datasets with discrepancy at least
as large as the observed value. If the p-value is too small the model is rejected. If the p-value is too large
then there is a danger that it is overfitting the data, which can be treated by regularizing the model using
hierarchical priors or by changing the model entirely. This calculation does not cost much computation
time since we are merely reusing the samples already generated for estimation purposes.

A.6 Implementation

In this section, we discuss details of implementation, including a number of techniques for optimizing
the speed and numerical accuracy of the algorithm which can be useful with large data sets. Even without
such optimizations the algorithm should run reasonably quickly on typical hardware for networks with
up to a few hundred nodes. But with these optimizations—and with a suitable choice of models—the
method can scale to hundred of thousands of nodes or more.

A.6.1 Sampling networks One of the more computationally costly steps in the algorithm is the gener-
ation of sample networks from the conditional posterior distribution P(A|θ , X). Naively generating the
network by flipping a biased coin for every node pair i, j takes time O(n2) on a network of n nodes.

For some models on sparse networks, this time can be reduced by explicitly sampling only the edges
that exist. That is, all edges are assumed not to exist, except for a sparse sample that are generated in
accordance with the fitted model. For instance, with the simple ‘uniform error’ model of Table A1, the
posterior probabilities Qij of edges are a unique function Q(X) of the number of observations Xij of the edge
in question. With this in mind we define � = ∑

(i,j) Qij = ∑
X n(X)Q(X) where n(X) = ∑

(i,j) δ(X, Xij)

is the number of node pairs with X observations and δ(x, y) is the Kronecker delta.
The value of � can be calculated rapidly once n(X) is known, then we can generate a sampled network

by first drawing an integer M ∼ Poisson(�) to represent the number of edges in the network, and then
generating M random edges with probabilities Qij with standard ‘roulette wheel’ proportional sampling
using binary search. The complete process takes time O(M log n), which on a sparse network will be
much faster than the O(n2) of the naive algorithm.

In other cases, we may be able to skip the process of network sampling altogether, although at the
price of still having to perform O(n2) operations. Specifically, when we want to calculate the average of
a function f that factorizes over node pairs thus

f (A, θ) =
∏
(i,j)

gij(Aij, θ), (A.21)
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we can write the average as

〈f (A, θ)〉 =
∑

A

∫
f (A, θ)P(A|θ , X)P(θ |X) dθ

=
∫

P(θ |X)
∏
(i,j)

∑
k

[
gij(k, θ)Qij(k, θ)

]
dθ . (A.22)

Now, we sample m sets of parameter values θr as usual, but generate no networks A, and the average we
want is given by

〈f (A, θ)〉 � 1

m

m∑
r=1

∏
(i,j)

∑
k

gij(k, θr)Qij(k, θr). (A.23)

A.6.2 Sampling parameters Generating sample values of the parameters also takes time O(n2) in gen-
eral, because the right-hand side of Eq. (A.12) involves a product over pairs of nodes. For some models,
however, we may be able to evaluate this product more rapidly by methods similar to those described
for sampling networks above. Taking again the example of the ‘uniform error’ model from Table A1, the
probability μij(k) is a function μ(X , k, θ) only of the number of observations Xij of the corresponding
edge (and k and θ ) and νij(k) is a function of k and θ only. This means we can group terms in the product
and write

∏
(i,j)

∑
k

μij(k, θ)νij(k, θ) =
∏

X

[∑
k

μ(X, k, θ)ν(k, θ)

]n(X)

, (A.24)

which saves considerable time.
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