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Abstract

Swarming is central to many problems in physics, biology, and engineering where collective
motion and cooperation emerge through interactions of many agents. As a result, inferring
network connections underlying swarms from time series data is an important problem with broad
application. In this work, we propose a method based on phase-space regression of the observed
dynamics with random forest models, from which relative interactions are clustered according to
their Gini importance with respect to a given agent. Network connections are inferred by
comparing how the statistics of the strongly and weakly important clusters overlap. Because the
method entails fitting the dynamics and finding the most important interactions for each agent
individually with general swarming assumptions, high accuracy can be maintained with relatively
modest amounts of observation data and utilizing only a small number of generalizable
hyperparameters across a variety of behavioral patterns, diverse physical ingredients, and
heterogeneous network topologies.

1. Introduction

Swarms of mobile agents interacting through relatively simple rules are known to display complex,
spatiotemporal, and coherent patterns [1]. Such systems are composed of many agents that consume energy
in order to propel themselves in space, are out of equilibrium, and exhibit collective motion without central
orchestration [2]. Natural examples include: colonies of bacteria [3, 4], swarms of insects [5-7], flocks of
birds [8, 9], schools of fish [10, 11], and crowds of people [12, 13]. Much work has demonstrated how
collective motion can emerge in swarms through physical and/or physically-inspired interactions, e.g. where
temporal changes in the positions and velocities of agents are governed by state-dependent forces and
inter-agent interactions that are often functions of relative coordinates [14-21]. In addition, swarm robotics
has emerged as a field with growing interest, motivated by potential applications from cooperative
exploration and mapping [22-24] to target seeking and tracking [25, 26], disaster recovery [27], resource
allocation [28], and swarms for defense [29, 30].

Because of the ubiquity of swarming systems, inferring the dynamics and topology of unknown swarms
from time series data is a problem of great interest. A typical approach is to extract the forces among agents
in a swarm [31], assuming for instance zonal interaction models [32], and/or two and three-body
interactions [33, 34]. Focusing specifically on topology, other promising techniques have leveraged general
measures of similarity and data-driven clustering to infer networks underlying flocking behavior [35, 36], in
which a swarm displays a high degree of polarization in its motion.

More generally, learning patterns of interactions in network-mediated dynamical systems is an area that
has received much attention in recent years. A broad class of techniques approaches inference from an
information-theoretic perspective, wherein direct links between agents are identified by a high degree of
mutual information [37-39], time-delayed mutual information [40], information rates of change [41, 42],
transfer entropy [43—45], and their generalizations. Other methods build graphical causal models with
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time-delayed dependencies to infer interactions [46]. Another wide-ranging approach is to fit a network time
series using a general regression method, wherein direct interactions are encoded in how the fit is performed.
There are basis-function techniques, where a library of typical interactions [47] or complete orthogonal
bases [48] are used to detect connections. Other methods fit a time series with well-known non parametric
machine-learning frameworks, such as reservoir computing [49] or random forest regression [50, 51], where
interactions correspond to non-zero Jacobian elements and features with high importance, respectively. In
addition, methods applying deep neural networks to the problem of inference have also gained traction with
high levels of accuracy [34, 52-55], though typically requiring large amounts of data and lacking
interpretability. Lastly, most of the methods in the literature entail passive observation of dynamical systems,
without actively probing a network to generate dynamics which may more efficiently enable inference.
Several works have made progress along this latter line of research, e.g. [56, 57].

In this work, we introduce a network inference method that lies in between specialized, swarm-specific
inference approaches and general network dynamics regression. Our technique is regression-based but
designed for the following: to handle large swarming networks with sparse and heterogeneous topologies, to
be robust in the presence of multiple swarming behaviors (emerging from nonlinear dynamics and noise), to
provide interpretable results, and to be accurate with only moderate amounts of data. In particular, we
perform regression of the temporal increments to the phase-space coordinates of agents within a swarm from
time series data in order to infer which relative-interactions are important, but without specific functional
forms using random-forest regression [58—60]. Then, we cluster interactions with Gaussian mixture models
according to their importance to determine which represent direct interactions. Our work is different from
other random-forest network inference techniques [50, 51], because it embeds relative-motion assumptions
consistent with swarming physics, and uses unsupervised statistical clustering to process the regression
importance, which inherently treats interactions with a given agent separately from the rest of the swarm.

2. Summary of network inference from swarming dynamics

In general, the local dynamical rules for agents within a swarming system will consist of many ingredients
with system-specific functional forms and parameters. Often, however, the dynamics contain some of the
general physics of self-propulsion, damping, alignment, attraction, repulsion, etc in addition to any
system-specific governing rules [1, 61], and external forces such as gravity. For example, at a minimum, most
systems composed of mobile robots will have collision-avoidance controls, which can be expressed in simple
terms as repulsive-force interactions [62—64].

We use the form of such physically-inspired interactions to extract information about unknown swarms,
and specifically, infer the interaction topologies that influence their dynamics. In this work we create a
dynamics regression and statistical procedure to determine the existence of pairwise interactions between
agents in a swarm from snapshots of their trajectories. A flow diagram in figure 1 summarizes the approach,
which takes as its input a position and velocity time series for swarming agents, and outputs an inferred
adjacency matrix representing the interaction network among the agents. We use the acronym ICRI as a
shorthand, throughout, and to emphasize its Importance Clustering of Relative Interactions basis. Section 3
elaborates further on technical details.

Because ICRI entails both fitting the dynamics through swarming assumptions and finding the most
important interactions for each agent individually, high accuracy can be maintained in spite of topological
heterogeneity, varying physical ingredients and parameters, diversity in the collective behavior observed, and
relatively modest amounts of data. The flexibility of the approach results in superior performance as
compared to information theoretic and similarity-clustering techniques, particularly for milling
behaviors [65] and for swarming networks with high interaction densities.

As motivation, and to showcase the flexibility of our approach, we give an upfront demonstration of the
ICRI network inference in a broad range of topologies and swarming systems. In figure 2, we show four
example swarms, each in different states of motion. The top row contains typical snapshots of the positions
and velocities for the swarms, while the middle and bottom rows plot the true adjacency matrices (specifying
which agents directly interact) [66] and the error matrices from the inference, respectively. The example
systems are quite different, notably in their topology: (a) is highly spatially correlated, (b) has significant
topological clustering (the tendency for neighbors of agents to directly interact [67], (¢) is randomly
constructed but topologically homogeneous, and (d) is random but heterogeneous, with the number of
interactions per agent ranging over a factor of 30. In addition, the example (c) comes from a high-fidelity
simulation of ten four-wheeled car robots, with only partially controlled dynamics, flocking to a target using
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Figure 1. Flow diagram of the steps in ICRI for swarming network inference.
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Figure 2. Output of ICRI inference for distinct networks in different motion states. (a) 50-agent Vicsek model [14] in flocking
state with stable heading. (b) 100-agent Watts—Strogatz [67] network in milling state with coherent rotation. (c) 10 four-wheeled
car robots flocking to a target while communicating with a fixed set of neighbors. (d) 100-agent random network with power-law
degree distribution [66] in disordered milling state. The top row shows quiver snapshots of the swarming behavior. The middle
row shows the true network to be inferred, specified by an adjacency matrix, A. The bottom row shows the error matrix from the
inference, A— A, where A is the inferred matrix. False positives are plotted in red while false negatives are plotted in blue.

the software CoppeliaSim' [68]. Despite the significant differences among the examples, the ICRI method
generalizes well and produces good accuracy as suggested by the sparse error matrices, even though it uses a
small number of identical hyperparameters that are kept fixed across the different systems under analysis.

In the remainder of this paper we lay out the model systems used to test our method (section 2.1),
present the details of how the ICRI network inference is performed (section 3), evaluate its performance as a
function of swarm parameters (section 4), and compare to other techniques (section 5). The final section 6
discusses the results presented and provides commentary on generalizations and applications.

2.1. Model systems

To test our method, we primarily consider time series data generated from two general classes of swarming
models. The first is a combination of standard models for self-propelled particles with second-order
dynamics in their position vectors in two spatial dimensions (r; for the ith agent) [15-21, 29],

= (a—

Bl r1+BIZA1]|

|f1 (|T] rl +B22Azj

—#i) fo (Irj—ril) + &(1).

(1)

In equation (1), « is self-propulsion constant, 3 is a nonlinear damping constant, B, is a constant that sets
the scale for position-dependent attractive and repulsive forces, B, is a constant that sets the scale for

1 Agents are modeled as non-holonomic treaded robots that rely on skid-steering to produce motion. The control schema computes the
required velocities for each tread in a global coordinate frame, based on a control function with a fixed communication network..
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alignment-interactions, and &;(¢) is a noise term. The attractive, repulsive, and alignment interactions are
mediated through a fixed topology with adjacency matrix A, where A;; =1 if agents 7 and j interact and zero
otherwise [66]. The above system can produce a variety of collective-motion behaviors including: flocking,
milling, and rotational states depending on physical parameters, initial conditions, interaction networks, etc.”
The second model that we consider is the Vicsek model [14] where every agent (7) has a fixed speed (v) in
two spatial dimensions, but with a dynamic heading angle (6;) that is updated in discrete time steps (Af ):

0i(t+ A0 = (0;(0)),,_, cqt &),

ri(t+ At) =1; (1) + v(cos(8; (1)) ,sin(0; (¢))) At. (2)
In equation (2), <n9j> =i <d denotes the average heading of agents within a disk of radius d around agent 1.
Though the system has fewer physical ingredients (self-propulsion, alignment, finite-range sensing, and
noise), the interaction topology is defined at every time step leading to time-dependent swarming networks
in general. For comparison to ICRI network inference, we consider agents i and j to have A;; =1, if they
interact through equation (2) for more than 50% of the snapshots in the time series data.

3. Method

As in other works, let us assume that we observe a swarm composed of agentsi = 1,2, ..., N over a series of
time snapshots p=1,2,..., P, each with a state vector ql(p ) at snapshot p. In particular, our primary focus will
be on q, = (x;,yi, %, i), where (xi, ;) is the center-of-mass position for agent i in two spatial dimensions, and
where dots denote time derivatives. The time evolution for each agent i is given by a collection of increment

vectors Aqu) = ql@ﬂ) —qu), forp=1,2,...,P—1. At each snapshot p, the increment vector Aqu) is
assumed to depend approximately on the state vector qu ) and the state vector differences qu ) fq;p ), for
j=1,...,N,j#i

Aq” =F (a” 4" ~a" 4" ~a¥....a" -4l ) + £ (), 3)

where F; is a vector valued function that in general can be nonlinear and different for each agenti,and £ is a
noise source. We refer to F; as the increment function of agent i. Note that equation (3) is a discrete-time
approximation for a general class of individual-based swarming models in continuous time [69, 70], which
includes the models of section 2.1. and many others [1] as special limits. The dependence of F; on the state
vector differences, rather than the state vectors themselves, implies that the swarm is assumed to evolve
according to a relative-interaction dynamics among agents.

3.1. Regression of the increment functions with random forests

Assuming that the dynamics of the observed swarm is approximated by equation (3), for a collection of
unknown F;, we infer the interaction topology from a sample time series by first fitting the increment
functions with a nonlinear regression model that reflects the input/output structure of equation (3). We
postulate that the interaction neighbors of a given agent 7 are associated with the model inputs of highest
feature importance [50, 51]. One machine-learning model particularly well suited for this setting is
random-forest regression, because it allows for fitting a general nonlinear F;, it has a built-in definition of
importance for its input variables (namely Gini importance [58—60], and variants thereof, such as
permutation importance [71]), it requires modest amounts of data for training (especially for the
high-dimensional systems that we consider), and it can be designed to avoid over-fitting in the presence of
noise.

In brief, random forests are ensembles of regression trees, each of which is a sequential, optimal binary
partitioning of its training data [58—60]. At each ‘leaf” in a tree, a single feature variable and threshold value
are chosen to partition the dataset into two branches. The predicted value within each branch is the data
average within the branch. The feature and threshold are selected to minimize the mean-squared error of this
prediction. For every tree in a random forest, the partitioning is performed a fixed number of times,
corresponding to a maximum depth, d, which controls the complexity. A schematic diagram depicting the
motion regression from time series snapshots using random forests with relative interactions is shown in the
upper two panels of figures 3(a) and (b). In panel (a), we show how the time snapshots are used to extract the

2 Unless stated otherwise, we take fi (r) = (Ca/ls) exp(—r/1,) — (C, /1) exp(—r/1,), which describes short range attractive and repulsive
forces between agents with length scales I, and I, respectively [16]. Similarly, we take f, = exp(—r/I,) where I, is a sensing length scale for
alignment.
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Figure 3. Schematic of the steps in ICRI for swarming network inference. For every ith agent in a swarm: (a) Compute the
increments to 7’s state space, measuring the change between snapshots in the time series. (b) Fit the increment function for i with
a random forest model that takes as its arguments the state-space vector for i, and the difference between 7’s vector and the vectors
for all other agents. (c) Output the (Gini) importance from the random forest for all state-space variables, and form a single total
importance score for every agent relative to i according to equations (4) and (5). (d) Divide the agents into four types by
performing a mixed-Gaussian clustering of the log total importance relative to agent i. Agents in the two clusters with the highest
means are candidates for interactions, determined by a final set of statistical tests equations (7) and (8). Steps (a)—(d) are repeated
for all agents i=1,2,...,N.

increments for agents, which comprise the training outputs. In panel (b), we illustrate how the increment
function for agent i is fit with regression trees, and plot example leaves in the first tree with selection
variables, thresholds, and predicted increments.

After fitting each increment function F; with a random-forest model /I:',-, we infer the interaction
neighbors of agent i by analyzing whose relative state vectors have the highest Gini importance [58-60, 72]
for F;. In our analysis, the Gini importance with respect to agent i is the fractional reduction in the
mean-squared error of F; (in predicting the {Aqi(l) , Aqi(z), cen Aquil)}) produced by each relative
interaction. As explained above, since trees fit data based on a series of single-variable conditions, the Gini
importance of a given interaction to Fiis computed by simply adding up the mean-squared error reduction
every time an interaction appears in the random forest. Our numerical implementation leverages the Python
library scikit-learn [73], and in particular its random forest regression methods, which compute Gini
importance following [58, 59, 72]. See supplementary material for additional details on the numerical
implementation. Hence, F; is associated with importance scores for each possible relative interaction. In
particular when q; = (x;,yi,%;, i), there are four Gini scores for agent j# i with respect to agent i, denoted
19,19 19 and I () corresponding to the phase-space differences x; — Xj> ¥i — ¥j» X — Xj, and y; — ¥,

it T
respectively.

3.2. Total importance estimates

In order to find the interactions of agent i, we aim to build an overall or total importance score for every
other agent j#i from the collection: I (x), ]1(])' ) I; ) and I; () A straightforward method would be to add up
position and velocity scores for j. However dependlng on the state of motion, the physical interactions, how
noise enters, etc Gini scores for some of the coordinates can be associated with larger uncertainty,
particularly I; ) and I Jy ) To see this, in figure 3(c) we show I (]x) Il(]y ) II(]x and I 9) for all agents with respect to
a typical agent iin a flocking (top) and milling (bottom) swarm generated from equation (1). Note that the
importance scores are plotted on log-scale on the vertical axis. For each coordinate type, agent scores are

sorted from highest to lowest Gini importance with respect to agent i. For the flocking example, scores for

5
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different coordinates fall off similarly and rapidly. However, for the milling example, the velocity scores do
not. In fact, they are relatively flat across the swarm—reaching a level of background above the position
scores and implying no distinction between agents. Possible conclusions are that agent i interacts with,
effectively, the entire swarm, or that Igt) and If]-y ) are associated with a high degree of noise and uncertainty.
Based on the assumption that each agent interacts (sparsely) with a relatively small number of neighbors
compared to the total N, we conclude the latter. Hence, when forming a total importance score, we want to
consider only coordinate types whose Gini scores decay sufficiently fast (e.g. Ii(jx) and If]-y )in figure 3(c,
lower)), and discount scores that are flat across agents.

To measure how fast each type of Gini score decays, for every agent i we compare the highest score to the
mth highest score, where m=|Np| and 0 < p < 1 is chosen to be roughly on the order of the network
sparsity. Specifically, for a finite set S let max(S,m) denote the mth largest element. As a measure of decay
rate, we compute the ratio of the highest Gini score to the mth highest Gini score and take the average value
over all agents 1 < i < N for each coordinate type. For instance, for the x-coordinate:

o max({[l(jx)}jr_l,l)
max({[g-x)}N m)
ij j:17

where (-); denotes averaging over the elements of a set indexed by i. Note that a larger s implies a clearer

distinction between low and high {Il(jx) ]N: | scores. The ratios s, s), and sU) are defined analogously to

(4)

equation (4). Example values for s*), s0), s and s0) are given in figure 3(c) for their respective swarms.

As mentioned, when creating a total importance estimate, we only want Gini scores associated with
coordinates that exhibit a more pronounced decay across all agents. Therefore, we find the coordinate type
that has the most rapid decay, namely s,y = max({s®),s0) s 500} 1) and use it as a benchmark. Then, we
add Gini scores from other coordinates only if they are within a certain tolerance, 0 <7< 1, of sp,x. Doing so,
gives the total importance estimate for agent j with respect to agent i:

® 0 ® , @ |
1,,-=H(5 —r>1§j")+H(s —r)1;?)+H<5—r>1§j‘>+H(s— )IE{), (5)

Smax Smax Smax Smax

where H(x) is the Heaviside function defined as H(x) = 1 if x> 0 and zero otherwise.

3.3. Gaussian mixture model for clustering the regression importance

The final step of ICRI is turning the total importance value I;; defined in equation (5) into an inferred
adjacency matrix entry Aij. Since the scores can range over several orders of magnitude, in general, we
process InI;. In sparse, heterogeneous swarms with noisy dynamics, the distribution of total importance
scores with respect to every agent can be quite different. For instance, the amount of background noise, the
importance scores of the most important interactions, etc can all vary from agent to agent, especially if the
number of interactions per agent is heterogeneous across the network. For these reasons, it is best to analyze
the scores with respect to each agent (i) separately. Statistical clustering allows us to process scores in a
common way, based on similar statistical patterns, but without a large number of hyperparameters. In this
work, we perform the desired clustering with Gaussian mixture models [73, 74], which allow for uncertainty
quantification and more flexibility as compared to other methods.

For each agent i we assume a Gaussian mixture model for the set {I;;, I», ..., iy} with 4 components for
the following reasons. First, to find the true interactions of agent i, we want to remove background noise
associated with unimportant agents, which nominally comprise a majority of the swarm. We do so by
defining a background type in the Gaussian mixture that we denote type (4). Outside this background type,
the remaining agents can be split into three types according to the likelihood of true interaction with agent i:
(1) yes, (2) maybe, and (3) no. We postulate that type (1) agents truly interact with agent i, types (3) and (4)
agents do not, and type (2) agents require further analysis.

Given the four types, the Gaussian mixture clustering entails fitting the distribution of {I;;,I5,...,in}
with a weighted sum of four parametric Gaussian distributions

4
ll'llij ~ Z Wiﬂg N ('uivg7 O.ivg) . (6)
g=1

In equation (6), N denotes a normal distribution with mean Hi,g and standard deviation o 4, with a relative
frequency w; , for importance type g€ {1,2,3,4} relative to agent i. Once the fit is performed, agent j is

6
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classified according to which Gaussian component maximizes the likelihood for InIj; to have been drawn
from it. An example of the importance clustering with respect to a typical agent is plotted in figure 3(d). Note
that the four types are arranged according to decreasing means: ;1 = fti2 > i3 = [4i 4.

Once we have classified all agents, we perform further analysis for type (2) agents in order to decide
whether they represent true interactions. To do so, we apply two additional statistical criteria. First, the scores
for type (2) should be well-separated from those for type (3). We build a quantitative criterion expressing
this condition by stipulating that typical fluctuations in (2) below its mean should not overlap with typical
fluctuations in (3) above its mean (expressed in terms of the standard deviations)’:

Wio — 2052 2 i3+ 20i 3, (7)

where z is a hyperparameter. Second, the scores for type (2) should not be too far separated from scores of
type (1). Since, by assumption, the characteristic distance between interactions and non-interactions is

i — [i 3, if type (2) is representative of the former, then y1; ; — p; > should be a significantly smaller fraction
of this distance,

Hi1 — Hi2 §f(/$i,1 - Mi,a)’ (8)

where 0 <f< 1 is another hyperparameter. Finally, since the parameters for the Gaussian mixture model are
determined based on stochastic iterative optimization of the probability likelihood [73, 74], we perform the
classification based on equation (6) over 20 independent trials and check the conditions, equations (7)

and (8), for each trial. If agent j is determined to have an interaction with agent i in 7, out of the 20 trials,
then we set Alj =1; otherwise AU =0. The final hyperparameter for ICRI is 7. See supplementary material for
additional details on the importance clustering implementation.

3.4. Hyperparameter calibration
The ICRI method depends on four primary hyperparameters: the maximum depth of trees d, the overlap
parameter z between importance types (2) and (3), the distance parameter f for importance types (1) and
(2), and the stochastic threshold parameter n,. The additional importance sparsity and tolerance parameters,
p and r, produce less performance sensitivity, and we leave them fixed at p=0.1 and r=0.3. Our goal is to
select suitable values for the remaining hyperparameters that give satisfactory performance for different
networks in various swarming states, over a range of physical parameters and models, and then keep those
values fixed throughout the method evaluations discussed in the remainder of the paper. In this way we try to
control the tendency to overfit a flexible machine learning method to a specific dataset.

To track the performance, we adopt as our primary measure the F; score, which is the harmonic mean of
precision and recall for binary classification [75]. The F; score is useful, since it accounts for errors from
both false ‘positives’ and false ‘negatives’. For network inference with a binary adjacency matrix let:

denote respectively the set of indices of the true positive, false positive, and false negative predicted links.
Then the F; score of a given network inference model is defined as:
2H#TT

PV = T A ®)

where # denotes the cardinality of the respective set [75]. By construction, the F; score ranges from 0 to 1.
Our aim is to achieve scores that are primarily in the range considered excellent, or F; > 0.9, without fine
tuning.

In figure 4 we plot the dependence of the F; score on each of the four primary hyperparameters in panels
(a)—(d). For each panel, red labels correspond to a network with flocking behavior, whereas blue labels
correspond to a network with milling behavior. For each series we deliberately choose different networks,
physical parameters, initial conditions, and models so that the results are robust in a variety of systems. A

3 Because the clusters are only finite samples from Gaussian distributions, often with small numbers, traditional hypothesis tests are
generally less accurate for inference than equations (7) and (8).

7
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ne

Figure 4. Calibration of ICRI hyperparameters. (a) Maximum depth of trees in the random forests. (b) Clusters 2—3 overlap
parameter. (c) Clusters 1 —2 difference parameter. (d) Threshold parameter for stochasticity. In each subpanel, the F; score is
plotted for flocking (red squares) and milling (blue circles) examples. Each series represents a different network whose details are
given in appendix. The inset in (a) shows the dependence of the average R? score (fraction of the increment variance explained)
from the random forest regression [73].

Table 1. Hyperparameters for ICRI swarming network inference.

parameter description value
d maximum depth of trees in random forests 10

z importance clusters 2-3 overlap 1.5

f importance clusters 1-2 difference 0.6
ny threshold for stochasticity 5

P importance sparsity 0.1

r importance decay-rate tolerance 0.3

discussion of the eight, significantly different swarming networks used in figure 4 can be found in appendix.
We point out that within each subplot, the other hyperparameters are set to the operational values used
throughout the rest of the paper.

Optimal values for a given swarm could be found by maximizing F; with respect to all hyperparameters.
However, in principle such an approach results in different parameters for each example. Here, we select
nominal values based on figure 4 that are stably in the target range for all 8 swarms, but do not rely on strict
optimization. The fixed values for the remainder of this work (and figure 2) are listed in table 1.

4. Performance with varying swarm parameters

Once we fix the hyperparameters, we can explore how ICRI performs as we change the properties of the
swarming system. In particular, we want to verify its robustness under a variety of physical parameters,
network topologies, and swarming behaviors. Table 2 summarizes the swarm simulation parameters used
(unless stated otherwise).

4.1. External parameter dependence
In this section we test performance on external parameters, such as the number of snapshots in the time
series (P), and the intensity of noise (D). Both the small-data regime and the high-noise limit are expected to
degrade the performance of ICRI, and hence it is important to quantify changes in accuracy as these
parameters are swept. In figure 5 we plot the F; score as a function of P and D for several examples. As in
figure 4, we follow the convention that flocking networks are plotted in red and milling networks are plotted
in blue. The flocking swarm is an 8-regular random graph and the milling swarm is a Watts—Strogatz
network (with (k) =10 and 10% random interactions [67]), both with 100 agents. The dynamics are
generated from equation (1), where the noise is white and spatially uncorrelated Gaussian with variance 2D.
First, in figure 5(a) we observe a monotonic increase in performance with P that is quite rapid until
P~10%, after which gains are limited. Given the 400 degrees of freedom in the swarming examples, the
nominal point P~ 10* is modest compared to other methods, particularly those involving deep neural
networks. We can gain a sense of why the performance changes as we increase P by looking at example error
matrices like the ones shown in figure 5(c). As we move from left to right, we increase P from 10° to 3 * 10°.
In the left example there are many rows of the inferred adjacency matrix where agents are predicted to have a
very large number of interactions, as indicated by red horizontal bands in the plotted error matrix. In fact,
the predicted mean number of interactions per agent is <IA<> ~ 12, which is 50% higher than the true value.
On the other hand, when P=3 x 10° the bands disappear and the mean number of interactions is correctly
predicted to be <lAc> ~ 8. The tests in figure 5(a) demonstrate a general finding, which we see for many
examples in this work, that our method requires moderate amounts of data to get satisfactory performance,
both with different topologies and collective behaviors.
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Table 2. Swarm simulation parameters.

parameter description value(s)
P number of time snapshots 10*

D noise intensity 1072
At time-difference between snapshots 0.05

N number of agents 8-200
(k) average number of interactions per agent 2-20
Ok standard deviation of the number of interactions per agent 0-10
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Figure 5. ICRI network inference performance as a function of external swarm parameters. (a) F; score dependence on the
number of snapshots. The network details are given in the main text. (b) F; score dependence on noise intensity for the same
networks as in (a). (c) Example error matrices for the flocking network in (a) with P=10° (left) and P=3  10° (right). (d)
Example x-motion of a single agent from the milling network in (b) for D=10"* (blue) and D=10"2 (orange).

Second, the dependence on noise intensity is more subtle. In particular, the F; scores increase for small
values of noise in figure 5(b), before decreasing when the noise becomes too large. Similar patterns have been
found in other works [49]. A qualitative explanation is that, if the noise is too small, the swarming system can
reside near a much lower dimensional deterministic attractor compared to N, which does not carry enough
information to extract the network by regression. On the other hand, if the noise is too large, the swarming
dynamics tends to be driven by noise alone, and not the deterministic contribution to the dynamics that
includes interactions, as in models equations (1) and (2). To see this, we give a suggestive example of the
dynamics in figure 5(d), where the x-coordinate of a single agent is plotted for small (blue) and moderate
(orange) noise intensities. In the former, the time series is approximately a simple sine wave. Consequently,
even though the number of snapshots in the time series is P= 104, the data is in fact not very expressive, since
it merely repeats the same pattern after a relatively short window. Viewed in light of the periodicity, the poor
performance is unsurprising. In contrast, for the moderate noise example the time series is more complex,
with a broad Fourier spectrum indicative of aperiodic motion [65]. For this latter example we achieve the
target accuracy, F; > 0.9. The examples in figures 5(b) and (d) are representative of the general trend that if
a swarm is observed near a stable spatiotemporal pattern, noise can increase the inference performance of
ICRI by generating more expressive data. The need for sufficiently high-dimensional time series data to
achieve target levels of performance is an issue that we return to in section 5.

4.2, Internal parameter dependence
Beyond external parameters, we can test how ICRI performs as internal swarm parameters change. Two
important internal parameters are the repulsive force strength and the topological heterogeneity of the
underlying network. The first is significant because repulsive forces tend to produce spatial separation and
negative phase-space correlations in the relative motions between interacting agents. The second is significant
because heterogeneity makes it difficult to process the interactions of topologically dissimilar agents within a
common framework. Several examples from the model system equation (1) are given in figure 6.

First, following the structure of figure 5, we plot the J; score as a function of the repulsive force strength
C, in figure 6(a) for an Erdos—Reényi network with 25 agents and (k) =4 [66]. For both flocking (red) and
milling (blue) the inference performance lies within the target range with 77 > 0.9 for most values of C,.
However, we can see that the flocking inference appears to show a degradation in accuracy with high levels of
repulsion. We can understand the cause by comparing the dynamics when the repulsion is C, =0 and
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Figure 6. ICRI network inference performance as a function of internal swarm parameters. (a) F; score dependence on repulsive
force strength for flocking (red squares) and milling (blue circles) networks. (b) 77 score dependence on the standard deviation
of the number of interactions per agent, . Network details are given in the main text. (c) Left: example x-motion of a single
agent relative to the flock center of mass from the network in (a) with C, =0 (blue) and C,=0.7 (orange). Right: F score for
C,=0.7 flocking example versus number of snapshots. (d) Example flocking networks from (b) with o4 =0.8 and oy, =4.

C,=0.7. An example is shown in figure 6(c, left) where we plot the x-motion of a single agent for the two
cases in blue and orange, respectively.

For the former, the dynamics fluctuate rapidly, indicative of an expressive time series. In the latter, high
repulsion slows the fluctuations around the swarm center of mass. In fact, only 25 time windows of the sort
plotted in figure 6(c, left) are included in the entire dataset for inference when P= 10%. As such, the
degradation in performance for large repulsion has more to do with having insufficient time series data. In
fact, doubling the dataset size to P=2 10* increases the performance to F; > 0.9, or comparable to the
weak-repulsion limit. The increased accuracy with more time series data is demonstrated in figure 6(c,
right). Overall, the tests in figure 6 demonstrate a general finding that our method is able to accommodate
swarms with different physical parameters, without a significant change in performance. The reason for
robustness is our reliance on the swarming assumptions of equation (3) which do not change as specific
model parameters are altered.

Second, to study the inference performance with topological heterogeneity, we hold the mean number of
interactions constant (k) =8, and vary the standard deviation using tunable networks. Two example series
are shown in figure 6(b) for flocking (red) and milling (blue) swarms. Each network is a configuration model
random graph [66] with 100 agents. The flocking networks have uniform degree distributions, and the
milling networks have Gaussians, both discretized to integer numbers of interactions. We can see that for
both swarming network classes, the performance fluctuates but is stable over significant heterogeneity with
F1 > 0.9 throughout. To help visualize the difference in the networks as we vary the distribution of numbers
of interactions per agent, we depict the limiting networks for flocking in figure 6(d). In particular, the more
heterogeneous network in orange has a complex topology with an inner core of highly interacting agents and
a sparse periphery where agents have as few as one interaction. The examples in figure 6(b), as well as
figure 2, demonstrate that our method generalizes well and maintains target levels of performance in
topologically heterogeneous systems, even without the need for hyperparameter re-calibration. Underlying
the robustness to heterogeneity is the fact that the ICRI method fits the swarming dynamics, assigns
importances, and classifies the importances separately for each agent.

4.3. Homing pigeon example
So far, we have tested ICRI on time series data generated from model systems and robotics simulations with
partially controlled dynamics. In this section, we explore performance using a biological dataset of homing
pigeons [76]. The data consist of positions and velocities for pigeons in a flock in three dimensions with time
resolution of 0.2 s using GPS tracking. An example trajectory from [76] is shown in figure 7(a) in the
horizontal plane (for ‘homing flight number 2’). By studying time-dependent correlations in the normalized
velocities, the authors found that the pigeons tended to organize themselves into hierarchical patterns with
directional interactions, in which pigeons were more likely to mimic the headings of certain individuals and
not others.

In particular, one can define a time-delayed correlation of the normalized velocities:

Ci(t)= <v,-(t) - (t+7)>, (10)

given a time-delay 7 and normalized velocity v; for agent i. One then looks for 7* that maximizes the
correlation between i and j. If the 7* is negative, a plausible meaning is that agent i tends to mimic agent j,
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Figure 7. Homing pigeon time series example. (a) Trajectories for 8 birds shown in the horizontal x—y plane. Each pigeon is
drawn with a different line style/color. (b) Time-delayed correlations in the normalized velocities for two possible interactions:
(red) and (blue). (c) The predicted network topology from time-delayed correlation (top) and ICRI (bottom).

and thus agent j would be considered a leader of agent i. For agents j# i with negative (or zero) 7 with
respect to agent i we can assign an A;;= 1, as long as the correlation is above some threshold (i.e.

Cii(7*) > 0.5). Doing so, one finds networks that are qualitatively robust under different motion

scenarios [76]. An example of two correlation functions with respect to the same pigeon i are shown for two
candidate neighbors in figure 7(b). For the blue neighbor 7* < 0, while for the red neighborhood, 7* > 0.
Consequently, the former can be reasonably assigned A;;=1, and the latter A; =0.

Here we repeat the analysis of the directed-correlation network (from homing flight number 2), and
compare to the output of ICRI. As with the former analysis, the data input consists of the normalized
velocities for each pigeon in the dataset. Note that in this example, there are a total of eight pigeons. The
network derived from the correlational analysis is shown in the upper panel of figure 7(c). The output of
ICRI is shown in the lower panel. Using the correlational network as ground truth, the ICRI inference
demonstrates fair agreement, with 7} =0.73. The performance is comparable to other machine-learning
methods tested on homing-pigeon networks [35]. However, ICRI does not rely on the approximation of
undirected interactions, and correctly predicts a non-symmetric A. In addition, both the correlational and
ICRI analyses agree roughly on the number of interactions (around 30), and that pigeon 7 has the lowest (or
tied for the lowest) in-degree, meaning that it mimics the fewest pigeons. Similarly, pigeons 7 and 3 have the
highest out-degrees, meaning that they tend to be mimicked more by others, and are therefore higher in the
leadership hierarchy; both networks give similar results for pigeons that are lower in the leadership hierarchy.
Of course, we point out that ICRI is designed to capture close-in-time dependencies (extracting how
important a given agent is in changing the current state of another from one time step to the next). In
contrast, connectivity derived from relatively long correlation times may detect secondary interactions as
opposed to direct ones, which can explain some of the apparent discrepancy between the two analyses.
Nevertheless, the network predicted by ICRI is broadly consistent with the findings in [76], and could be
useful for further uncovering other interactions implicit in the swarming behavior beyond heading mimicry.

5. Comparison to other methods

Finally, we compare the performance of ICRI to other network inference techniques. The techniques
compared against in this work are common and relatively straightforward: pairwise mutual

information [37-39], pairwise time-delay mutual information [40], pairwise transfer entropy [43—45], and
K-similarity clustering [35]. Note that we tested several other inference methods [46, 47], but their
performance was relatively poor, at least for the swarming dynamics of interest here and without significant
tailoring, so we excluded them from the study. In general, each chosen comparison technique has a binning
parameter (or several binning parameters) for unsupervised clustering, a choice of state variables to cluster®,
a time-delay (for time-delay mutual information and transfer entropy), and a threshold parameter. When
comparing to ICRI, we vary all of the free parameters and choose the best for comparison. Ultimately, each
technique requires taking a measure of interaction between agents and turning the measure into an inferred

4 For all comparison methods we tested different combinations of state variables for every agent i, including the full state-space vector, g;.
However, in general, using the full g; gave worse performance. We found the best performance for the information-theoretic techniques
by clustering velocity data, whereas for K-similarity clustering, the best results were obtained by clustering position data.
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Figure 8. Performance comparisons when varying the mean number of interactions per agent. (a) F; score for ICRI (blue circles)
and optimized: mutual information (oMI, black diamonds), time-delayed mutual information (oTDMI, magenta triangles),
K-similarity clustering (0KS, red squares), and importance (oI, blue stars). (b) F; score for ICRI (blue circles) and optimized:
mutual information (oMI, black diamonds), transfer entropy (0TE, cyan pluses), and importance (ol, blue stars). Network details
for panels (a) and (b) are given in the main text. (c) An example optimization for K-similarity clustering. The F; score is plotted
versus its threshold for different binning parameters (different colors). The highest score is chosen for comparison. All non-ICRI
methods are optimized this way. (d) PCA dimension for milling networks in (b) with 90% (black squares) and 95% (black circles)
variance capture.

adjacency matrix through a threshold. This approach inherently works best when agents are at least
approximately topologically similar, e.g. in their number of interactions. Therefore, to achieve the highest
compatibility among the techniques under comparison (in addition to parameter optimization) we test on
topologically homogeneous swarms. Lastly, a fundamental difficulty for any network inference method is
that, as the number of interactions an agent has becomes large, it becomes challenging to separate direct
from indirect interactions. Therefore, we would like to compare performance as a function of the number of
interactions.

In figure 8 we show example comparisons for flocking (a) and milling (b) swarms versus the average
number of interactions per agent. The flocking networks are k-regular configuration model random
graphs [66]. The milling networks are Watts—Strogatz networks with 10% random interactions [67]. All of
the series have N=100 agents. In addition to the comparison techniques which are optimized, we plot the
ICRI method with blue circles (which is not optimized), and a variation with blue stars in which a single
optimal global threshold is chosen for the total importance matrix I, defined through equation (5), as with
the comparison techniques.

Several key trends are apparent in figures 8(a) and (b). First, for small numbers of interactions (k) < 8,
our method performs as well or better than the other methods even without optimization (figure 8(c)); recall
that identical hyperparameters are used for all blue circle points. Second, all of the other techniques degrade
precipitously when the number of interactions become moderately large, (k) 2 8. In particular, our method
is able to more effectively distinguish between direct and indirect interactions for a wider range of (k). Third,
even our method eventually reaches only fair performance when (k) becomes too large. In figure 8 the
flocking example remains in the target performance range F; > 0.9 with (k) =20, but the milling example
moves out of range when (k) > 10.

A partial explanation for the degradation of performance with high (k) was hinted at in section 4.
Namely, as (k) becomes large, the effective dimensionality of the time series decays. This is particularly the
case for the milling swarms, figure 8(b). We can quantify the reduction in the effective dimensionality by
tracking the principle component analysis (PCA) [77] dimension of the swarm time series. In this
application, the PCA entails finding an optimal linear basis for the state space that captures some fraction of
the temporal variance [65]. Two examples are shown in figure 8(d) for two fractions of the time series
variance captured for the milling swarm. We can see that as (k) increases, the effective PCA dimension (9) of
the milling data eventually becomes significantly smaller than the number of agents N=100. We suggest
0 <N as a crossover point at which sparse network inference techniques based on regression will have
difficulty. For learning the network underlying swarming systems with such low dynamical complexity, one
would likely need to generate transient behavior with higher values of § [47, 56, 57].

6. Conclusions

Collective motion of many coupled mobile agents is ubiquitous and includes a wide variety of
spatiotemporal behaviors across many scales in physics, biology, and engineering. Yet, in large unknown
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swarming systems it is difficult to extract patterns of interactions, especially when individual agents can have
many degrees of freedom in several spatial dimensions. Despite the different space and time scales of known
swarming systems, from active particles to birds and robots, many swarms are driven in part by basic physical
and/or physically-inspired interactions and forces. Such ingredients typically entail increments to the
phase-space degrees of freedom for each agent locally in space and time based on state-dependent forces and
controls for the agents, as well as interaction forces that are functions of relative coordinates with respect to
the rest of the swarm.

In this work, we developed a method that leverages these insights for swarming network inference. First,
random-forest regression models were fit to the increment data for each agent in order to extract the
reduction in prediction error due to the inclusion of every possible relative interaction. Then, an importance
estimate was obtained for every agent with respect to a given agent. Finally, the importance scores were fit to
a Gaussian mixture model and thresholded using the statistics of the clusters to separate direct interactions
from indirect ones and background noise. Because of its physics-informed structure and the fact that clusters
were formed and analyzed for each agent separately, the proposed method was able to achieve high accuracy
compared to other techniques in spite of complicating factors such as topological heterogeneity, diversity in
the swarming behavior, physical parameter variation, and high interaction densities.

Our approach represents a step-forward towards inferring large, sparse, and heterogeneous swarming
networks, particularly when there is an absence of highly polarized collective motion. Hence, we expect
suitable variations to be useful for inferring links in other large dynamical systems with nonlinear
interactions and noise, for cases between sparse and dense data regimes, where some partial physical
assumptions are known, and where interpretability for informing subsequent science is desirable. Important
examples include networks of coupled phase oscillators, which are used to model, for instance, high-voltage
electric power grids, where the dynamics often evolve with relative state-space interactions as well [78]. Yet,
limitations for our method point toward improvements and possible generalizations. A key direction would
entail more precise uncertainty quantification of importance and a probabilistic formulation for inferring
interactions more generally. This could be achieved, for instance, by using more flexible measures of feature
importance, such as permutation importance [71], and/or developing a non-parametric Bayesian
framework [79] for clustering importance where an optimal number of clusters is inferred separately for each
agent. Another major direction would address optimal perturbations to a swarm for generating sufficiently
expressive data and enabling more accurate network inference, particularly for dense swarming networks.
Such perturbations could involve probing a swarm through collision with external agents, where the
subsequent transients could be used to infer interactions. Addressing these issues, among others, will form
the basis of future work.
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Appendix

We briefly discuss the swarming networks used in the hyperparameter calibration, section 3.4. and figure 4.
First, in figure 4(a) we plot the inference performance as function of the maximum depth of the regression
trees for a 50 agent tree network with a power-law degree distribution (red) and a 100 agent Watts—Strogatz
network [67] with average degree (k) =10 and with a fraction of interactions (10% in this case), chosen at
random (blue). Both examples are generated from equation (1). In either case, the F; score is near the target
range (F; > 0.9) when the tree depth of the random forest regressor is at or close to d=10. In contrast, if we
consider the accuracy of the increment-function fit on the training data, we expect a monotonic increase
with d. This is shown in the inset panel of figure 4(a), where we plot the R? (fraction of the variance captured
by the random forest regression) versus d. As we might expect, we find that for values of d which are too
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large, the models tend to overfit to the time series and generally have lower accuracy for inference. The value
d=10 is roughly in the range where underfitting and overfitting are avoided.

Second, in figure 4(b) we plot the inference performance as function of z for two configuration model
networks [66] generated from the swarming equation (1). The flocking swarm is a 100-agent bimodal
network where 90 agents have 3 interactions while 10 agents have 15 interactions [21]. The milling swarm is
a 100-agent power-law degree distributed network, k=>> [66] . For both examples we find F; scores near the
target range when 1 <z< 2. Recall from equation (7) that if z=0 we effectively count all interactions
classified as type (2) to be direct, whereas if z is large, no type (2) interactions are considered direct. We pick
z=1.5 roughly between these two limits.

Third, in figure 4(c) we plot the inference performance as a function of f for two random networks
generated from equation (1). The flocking swarm is a configuration model network with 100 agents where all
agents have 5 interactions (called 5-regular) [66]. The underlying network of the milling swarm is a
200-agent Barabdsi—Albert graph (with m=3 [66]) . The limiting dependencies with f from equation (8) are
similar to z.

Finally in figure 4(d) we plot the inference performance as a function of #,, recalling that in order for
A,-j =1, I;; must be classified as a type (1) or type (2) interaction with equations (7) and (8) having been
satisfied in 7, out of 20 trials. The flocking network is a 50-agent Vicsek swarm modelled with equation (2).
Since the Vicsek swarming network is time dependent, we build an effective adjacency matrix to be inferred
in which agents i and j have A;;=1 if they interact in at least half of the P snapshots generated from
equation (2). The milling network is a 25-agent Erds—Reényi graph, in which the mean number of
interactions is (k) =4 [66]. For both examples, we can see that F; has a maxima near n, =5, with only a
modest reduction in performance for more restrictive thresholding.
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