Statistics > Machine Learning
[Submitted on 10 Mar 2025]
Title:Uncertainty quantification and posterior sampling for network reconstruction
View PDF HTML (experimental)Abstract:Network reconstruction is the task of inferring the unseen interactions between elements of a system, based only on their behavior or dynamics. This inverse problem is in general ill-posed, and admits many solutions for the same observation. Nevertheless, the vast majority of statistical methods proposed for this task -- formulated as the inference of a graphical generative model -- can only produce a ``point estimate,'' i.e. a single network considered the most likely. In general, this can give only a limited characterization of the reconstruction, since uncertainties and competing answers cannot be conveyed, even if their probabilities are comparable, while being structurally different. In this work we present an efficient MCMC algorithm for sampling from posterior distributions of reconstructed networks, which is able to reveal the full population of answers for a given reconstruction problem, weighted according to their plausibilities. Our algorithm is general, since it does not rely on specific properties of particular generative models, and is specially suited for the inference of large and sparse networks, since in this case an iteration can be performed in timeO(Nlog2N) for a network ofN nodes, instead ofO(N2) , as would be the case for a more naive approach. We demonstrate the suitability of our method in providing uncertainties and consensus of solutions (which provably increases the reconstruction accuracy) in a variety of synthetic and empirical cases.
Current browse context:
stat.ML
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)