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“The world is either the effect of cause or 
chance. If  the latter, it is a world for all 
that, that is to say, it is a regular and 
beautiful structure.” 

Marcus Aurelius 

Proto-organisms probably were randomly aggregated nets of chemical 
reactions. The hypothesis that contemporary organisms are also randomly 
constructed molecular automata is examined by modeling the gene as a 
binary (on-off) device and studying the behavior of large, randomly con- 
structed nets of these binary “genes”. The results suggest that, if each 
“gene” is directly affected by two or three other “genes”, then such random 
nets: behave with great order and stability; undergo behavior cycles 
whose length predicts cell replication time as a function of the number of 
genes per cell; possess different modes of behavior whose number per net 
predicts roughly the number of cell types in an organism as a function of 
its number of genes; and under the stimulus of noise are capable of 
differentiating directly from any mode of behavior to at most a few other 
modes of behavior. Cellular differentation is modeled as a Markov chain 
among the modes of behavior of a genetic net. The possibility of a general 
theory of metabolic behavior is suggested. 

1. Introduction 
A living thing is a complex net of interactions between thousands or millions 
of chemical species. A fundamental task of biology is to account for the origin 
and nature of metabolic stability in such systems in terms of the mechanisms 
which control biosynthesis. In the thermodynamics of gases, the mathematical 
laws of statistics bridge the gap between a chaos of colliding molecules and the 
simple order of the gas laws. In biology, a gene specifies a protein, and the 
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output of one gene can control the rate of output of a second. The mathe- 
matical laws which engage large nets of interacting genes into biosynthetic 
coherence remain to be elucidated. 

In this article I report the behavior of large nets of randomly interconnected 
binary (on-off) “genes”. The motives for this choice of model are many. 

The analogy of genetic repression and derepression with digital computers 
has suggested to several authors (Jacob & Monod. 1963; Apter, 1966; Bonner, 
1965; Sugita, 1963; Kauffman, 1967) that the genome embodies complex 
switching circuits which constitute a program for metabolic stability and cell 
differentiation, rather than providing a coded description of these phenomena. 

It is a fundamental question whether metabolic stability and epigenesis 
require the genetic regulatory circuits to be precisely constructed, Has a 
fortunate evolutionary history selected only nets of highly ordered circuits 
which alone insure metabolic stability; or are stability and epigenesis, even 
in nets of randomly interconnected regulatory circuits, to be expected as the 
probable consequence of as yet unknown mathematical laws? Are living 
things more akin to precisely programmed automata selected by evolution, 
or to randomly assembled automata whose characteristic behavior reflects 
their unorderly construction, no matter how evolution selected the surviving 
forms ? 

In this article I present evidence that large, randomly connected feedback 
nets of binary “genes” behave with stability comparable to that in living 
things; that these systems undergo short stable cycles in the states of their 
constituents; that the time course of these behavior cycles parallels and 
predicts the time required for cell replication in many phyla; that the number 
of distinguishable modes of behavior of one randomly constructed net 
predicts with considerable accuracy the number of cell types in an organism 
which embodies a genetic net of the same size; that, like cells, a randomly 
connected genetic net is capable of differentiating directly from any one mode 
of behavior to at most a few of its other modes; and that these restricted 
transition possibilities between modes of behavior allow us to state a theory 
of differentiation which deduces the origin, sequence, branching, and cessation 
of differentiation as the expected behavior of randomly assembled genetic nets. 

Mathematical insight into the behavior of randomly connected feedback 
systems is slight. Goodwin (1963) has treated the gene as a continuously 
oscillating biochemical element whose output of mRNA is repressed by the 
protein specified. To study coupled systems of such biochemical oscillators, 
Goodwin was constrained by the conditions of integrability to restrict cross- 
coupling between genes to be symmetrically repressive and form a linear 
sequence in which no gene represses more than its two neighbors. There is no 
reason, however, to suppose that the crossreactions between real genes are 
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similarly constrained. To study the behavior of nets with arbitrarily complex 
couplings requires us to abandon the effort to obtain an integral of motion 
for the system (Goodwin, 1963). 

Several considerations suggest the advantage of modeling the gene as a 
binary device, able only to be on or off. The most fundamental of measures is 
the binary category scale. Use of these simplest devices facilitates study of the 
behavior of truly complex nets; the behavior of randomly connected, but then 
fixed, nets of binary components should provide a reliable guide to the 
behavior of similar systems whose components’ behavior are described by 
continuous or probabilistic functions; synthesis of mRNA is, in fact, probably 
an all or none binary process; the number of repressor molecules per gene is 
thought to be less than about 12 (Bretscher, 1967), therefore it seems 
preferable to treat the activity of a gene as a discrete, not continuous, function 
of its input. 

To study the behavior of randomly interconnected nets requires a definition 
of the population from which equiprobable sampling is to be done. A distinct 
advantage in the choice of a binary model for gene activity is that the number 
of different possible rules by which a finite number (K) of inputs may affect 
the output behavior of a binary element is finite -22” (see Fig. 1). This 
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FIG. 1. (a) W, X, and Y are each binary devices which act as inputs to 2, another binary 
device. The 3 x 8 matrix of 1 and 0 below W, X, Y list the eight possible configurations of 
input values to element 2. The column under Z assigns to it the value it will assume one 
moment after each input configuration. (a) is one of the 2@ = 256 Boolean functions of 
three variables. (b) The 2@ = 16 Boolean functions of two input variables are derived by 
filling the column under Z with 1 and 0 in all possible (16) ways. Function I is contrudirfion, 
2 is and, 16 is tultfology. 
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allows construction of switching nets which are random in two different, but 
well defined, senses: the K inputs to each binary “gene” may be chosen at 
random; the effect of those inputs on the recipient element’s output behavior 
may be randomly decided by assigning at random to each element one of the 
possible 2”K Boolean functions of its inputs. Once built, the nets I have 
studied remained fixed in the choice of inputs to each gene, and their effect 
on its output. 

The number of genes whose products directly affect the output of any gene 
is not known. Therefore, I have studied nets in which each gene has direct 
inputs from all genes, nets with one input per gene, nets with two inputs per 
gene, and nets with three inputs per gene. 

Since the autonomous, undriven behavior of a system must be elucidated 
before the effect of exogeneous inputs can be understood, I have studied the 
behavior of switching nets free of external inputs. A bacterium in a constant 
environment undergoes autonomous changes in the concentrations of 
molecular species, and the sea urchin, in a similarly homogeneous surrounding, 
develops in an orderly sequence of states from its zygote. Since constant 
external input to a net is equivalent to a similar net held free of external input, 
stable oscillations of chemical species and cell differentiation seem to be largely 
autonomous behaviors of metabolic nets. 

The study of randomly constructed but deterministic switching nets forms 
a poorly developed area of automata theory. Walker & Ashby (1965) have 
examined the effect of the choice of Boolean function on the behavior of 
randomly interconnected nets of binary elements. They simulated nets in 
which each of the 100 elements received a feedback input from itself, and 
randomly assigned inputs from two other elements. For each experiment, 
all elements of the net were assigned the same Boolean function. 

These nets embody behavior cycles (described in detail below). They found 
that the choice of the Boolean function assigned to all the elements markedly 
affected the length of these behavior cycles. Some functions (e.g. “and”) 
yield very short cycles, others (e.g. “exclusive or”) yield cycles of immense 
length. 

Since there is no reason to suppose that, in living genetic reaction nets, 
all elements are assigned the same Boolean function, I have studied nets in 
which all the 22K possible Boolean functions are assigned randomly, one to 
each element. 

2. Genetic Model 

On these considerations, the gene is modeled as a binary device able to 
realize any one, but only one, of the possible Boolean functions of its K 
inputs. If the activity of a formal gene, for brevity, gene, at any time is 1, 
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then the value of all its output lines at time T+ 1 is simultaneously 1. Thus, 
the state of the outputs of a gene at T+ 1 depends on its activity at time T 
alone. For our logical analysis, it is sufficient to allow time to occur in dis- 
crete, clocked moments: T= 1, 2, 3 . . . . 

A formal genetic net is constructed by choosing a value of N, the number 
of elements comprising the net, and of K, the number of input lines to any 
gene. Each gene in the net receives exactly K inputs, one from each of K 
formal genes in N. Inputs arise only from members of N. On the average. 
each element has Koutput lines. Nets are randomly constructed in two distinct 
senses. The K inputs to each gene are chosen randomly; to each gene one of 
the 22K Boolean functions of its K inputs is assigned randomly. After being 
assembled, these nets are deterministic. We assume that all genes compute 
one step in one clocked time unit. 

Such a genetic net is a finite sequential atuomation, a machine with a finite 
number of states and a function mapping each state into a subsequent state 
(see Fig. 2). A state of the net is described by a row which lists the present 
value, 1 or 0, of each of the N elements of the net. Each gene can be inde- 
pendently on or off, thus there are just 2N distinct states of a net of N binary 
elements. 

If the system is placed in some state at time T, then at T+ 1 each gene 
scans the present value of each of its K inputs, consults its Boolean function. 
and assumes the value specified by the function for that input configuration. 
The net passes from a state to only one subsequent state; therefore, although 
two states may converge on to a single subsequent state, no state may diverge 
on to two subsequent states. (The system is state determined.) 

There are a finite number of states. As the system passes along a sequence 
of states from any arbitrarily chosen initial state, it must eventually re-enter a 
state previously passed. Thereafter, the system cycles continuously through 
the re-entered set of states, called a cycle. The cycle length is defined as the 
number of states on a re-enterant cycle of behavior. A state which re-enters 
itself, a cycle of length one, is called an equilibria1 state. Since more than one 
state may converge on a single state, the state re-entered need not be the 
arbitrarily chosen initial state. The transient (or run-in) length is the number of 
states between the arbitrarily chosen initial state and the first state encountered 
on a cycle. A conJluent is the set of states leading into, or on, a cycle; the sire 
of a confluent is the number of states comprising it. Each state lies on a single 
confluent [(see Fig. 2c)]. 

A formal genetic net must contain at least one behavior cycle; it may 
contain more. By releasing the net from many different states, each of which 
runs to only one cycle, the total number of different cycles reached may be 
counted. The number of cycles embodied in a net is the number of different 
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FIG. 2. (a) A net of three binary elements, each of which receives inputs from the other two. 
The Boolean function assigned to each element is shown beside the element. (b) All possible 
states of the 3-element net are shown in the left 3 x 8 matrix below T. The subsequent state 
of the net at time T+ 1, shown in the matrix on the right, is derived from the inputs and 
functions shown in (a). (c) A kimatograph showing the sequence of state transitions leading 
into a state cycle of length 3. All states lie on one confluent. There are three run-ins to the 
single state cycle. 

behavior cycles of which the net is capable. Since no state can diverge on to 
two subsequent states, no state on one cycle can simultaneously be on a 
second cycle. Different cycles in one net are behaviorally isolated from one 
another. 

A distance measure comparing two states of the net may be defined as the 
number of genes with different values in the two states. (For example. the 
state (00000) of a 5 gene net, and the state (00111) differ in the value of three 
elements.) This distance is used as a measure of dissimilarity between sub- 
sequent states on a transient as the system approaches a cycle, between 
subsequent states along cycles, and between cycles. 

As the net passes along a sequence of states on a cycle, one unit of noise 
may be introduced by arbitrarily changing the value of a single gene for one 
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time moment. After perturbation, the system may return to thecycle perturbed, 
or run into a different cycle. In a net of size N there are just iV states which 
differ from any state in the value of just one gene. By perturbing all states on 
each cycle to all states a distance of one, a matrix may be obtained listing the 
total number of times the system returned to the cycle perturbed, or ran into 
any of the other possible cycles. Dividing the value in each cell of this matrix 
by its row total yields the corresponding matrix of transition probabilities 
between cycles, under the drive of random, one unit, noise. Such a matrix is 
a Markov chain. The probability of transition from one cycle to a second 
need not be identical with the probability of transition from the second to the 
first. Thus, state noise may induce asymmetric probabilities of transition 
between the independent behavior cycles of the net. 

3. Totally Connected Nets, K = N 

In random nets in which each element receives an input from all elements, 
the state subsequent to each state is chosen by sampling at random from an 
infinite supply of the 2N distinct states of the net. The characteristics of such 
a random mapping of a finite set (2N) of numbers into itself has been solved 
(Rubin & Sitgreave, 1954). The expected length of the behavior cycle is the 
square root of the number (2N) in the set. Therefore, in totally connected nets 
with 200 elements and 2*O” states, the expected cycle length is 2”’ - 103’ 
states. If the transition from one state to the next required one microsecond, 
then the time required for a net of 200 elements to traverse its cycle is about 
lO.OOO,OOO times Hubbel’s age of the universe. Totally connected, random 
nets are biologically impossible. 

4. One Connected Nets, K = 1 

Random nets in which each element receives just one input are no more 
biologically reasonable than totally connected nets. The structure of a one 
connected net breaks into separate loops of elements (as in Fig. 2(c) with the 
direction of all arrows reversed). State cycles arise whose lengths are a 
maximum of two times the lowest common multiple of the set of structural 
loop lengths. For random nets as small as 200, the state cycles generally 
exceed several millions of states in length (Slone, 1967). One connected 
random nets possess behavior cycles capable of realization by no earthly 
organism. 

5. Two Connected Nets, K = 2 

The behavior of randomly interconnected, deterministic nets in which each 
element received just two inputs from other elements is biologically reason- 
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able. 1 have studied nets of 15, 50, 64, 100, 191, 400, 1024, 4096 and 8191 
elements both by simulation on digital computers and analytically. Nets ot 
1000 elements possess 21°00 N 10300 possible states. The typical net is 
restricted to cycle among 12 of these states. 

The program used constructs a net of size N by random assignment of the 
two inputs and one of the 222 = 16 Boolean functions to each binary gene. 
The net is placed in an arbitrary initial state (for example, with each gene 
switched off) and, at successive time moments, computes its next state. Each 
of the sequence of states along a run-in is compared with all previous states, 
and when the present state is identical to a state of the system .X moments 
previously, a cycle whose length is x states has been identified. If undisturbed, 
the system would cycle through these x states repeatedly. 

5.1. CYCLES 

Cycle lengths in such nets are exceptionally short. Data was obtained for 
at least 100 nets at each of several different sizes, and a histogram of the 
cycle lengths found in each size net was compiled. Figure 3(a) presents a 
histogram of cycle lengths found in nets of 400 elements which used all 16 
Boolean functions of two inputs equiprobably. The distribution ofcycle lengths 
is markedly skewed toward short cycle lengths. Generally, the modal cycle 
length is less than the median length, which, in turn, is less than the mean 
cycle length. Here the modal length is 2, the median is 8, and the mean is 98. 
Equilibria1 states (those which successively become themselves) are common. 

Among the 16 Boolean functions of two inputs [see Fig. l(b)], two are 
tautology and contradiction. An element assigned tautology is switched on 
regardless of the previous input values. An element assigned contradiction is 
constantly off. Thus, 2/16 = l/8 of the elements in a K = 2 random net are 
foci of constancy. These foci might be thought necessary to produce short 
behavior cycles. This is untrue. Nets were also studied in which these two 
functions were disallowed and the remaining 14 Boolean functions assigned 
equiprobably. The effect is to increase slightly the expected cycle length in 
nets of any given size and to shift the distribution of cycle lengths in nets of a 
given size from that found with all 16 Boolean functions. In Fig. 3(b) is the 
histogram of cycles from nets of 400 elements which used neither tautology 
nor contradiction. The distribution is still strongly skewed toward short 
cycle lengths, but the number of cycles of length one (equilibria1 states) has 
decreased. The mode here is 12, the median is 32, and the mean is 209. 
Deletion of tautology and contradiction has increased the median cycle 
length in nets of 400 elements from 8 to 32 states. The distribution of cycle 
lengths is remarkable also in the preponderance of even numbered cycle 
lengths. 
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FIG. 3. (a) A histogram of the lengths of state cycles in nets of 400 binary elements which 
used all 16 Boolean functions of two variables equiprobably. The distribution is skewed 
toward short cycles. (b) A histogram of the lengths of state cycles in nets of 400 binary 
elements which used neither tautology nor contradiction, but used the remaining 14 
Boolean functions of 2 variables equiprobably. The distribution is skewed toward short 
cycles. 
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Because the distribution of cycle lengths is highly skewed, the median 
cycle length seems the most representational length for nets of any size. 
In Fig. 4, the log of the median cycle length is plotted against the log of the 
size net, for nets with all 16 functions, and separately for nets without 
tautology and contradiction. The values in each condition appear non-linear 
in the log/log plot. The curves are initially steep, and flatten at larger values 
of N. In nets with tautology and contradiction allowed, the asymptotic log 
cycle length against log N is -0.3. In nets with tautology and contradiction 

II ’ t “““’ A “““” ’ ’ ““1” ’ ’ “““’ ) ’ llIJ 
IO too 1000 l0.000 I,000,000 

n= size of net 

FIG. 4. Log median cycle length as a function of log N, in nets using all 16 Boolean 
functions of two inputs (all Boolean functions used), and in nets disallowing these two func- 
tions (tautology and contradiction not used). The asymptotic slopes are about 0.3 and 0.6. 

disallowed, the asymptotic log cycle length -0.6 log N. Disallowing 
tautologies and contradictions appears to double the asymptotic slope in the 
log/log plot. In this condition, the expected cycle length is just slightly 
greater than the square root N (0.5 in the log/log plot). As N increases, the 
median cycle length initially increases rapidly, then progressively slowly. 
By projection, nets of l,OOO,OOO elements, with tautology and contradiction 
disallowed, possess behavior cycles of about 1000 states in length-an extreme 
localization of behavior among 219000,00” possible states. 

5.2. TRANSIENTS 

For nets of a given size, the lengths of run-ins to cycles appears uncorrelated 
with the length of the cycle to which the transient ran (Fig. 5). The longest 
transients found were about the same length as the longest cycles found. 
Like cycle length, the distribution of transient lengths is highly skewed 
toward short lengths. 
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FIG. 5. A scattergram of run-in length and cycle length in nets of 400 binary elements 
using neither tautology nor contradiction. Run-in length appears uncorelated with cycle 
length. A log/log plot was used merely to accommodate the data. 

5.3. ACTIVITY 

When the system is released from an arbitary initial state, the number of 
elements which change value (the activity) per state transition decreases 
rapidly. In nets of 100 elements, using all 16 Boolean functions, the number 
of elements which change value at the first state transition is about 0-4X 
This decreases, along a curve nearly fitted by a negative exponential with a 
half decay of 3-4 state transitions, to a minimum activity of 0 to 0*25N per 
state transition along the cycle. For larger nets, the half decay should require 
more transitions. Thus, as the system approaches a cycle, states become 
progressively more similar. One would expect that all states which differ from 
cycle states in the value of only one element would themselves be located a 
very few state transitions from that cycle. 

The number of genes which change value during a cycle varies between 0 
and 35 in nets of 100 elements using all 16 Boolean functions. The consequence 
is that most genes are constant throughout the cycle, and the cycle states are 
highly similar. 
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5.4. NUMBER OF-CYCLES 

The number of different state cycles-that is, the number of independent 
and different modes of behavior in these nets-are as surprisingly small as 
cycles are short. 

By computer simulation, nets of 15, 50, 64, 100, 191 and 400 elements were 
studied. For each net, the system was placed successively in 50 arbitrarily 
chosen initial states, and the cycle discovered from each initial state was 
compared with previously discovered state cycles of that net. The median 
number of cycles per net is low; the distribution of the number of cycles per 
net around the median is skewed toward few cycles. In Fig. 6 is a histogram 
of the number of cycles per net, where N = 400, and neither tautology nor 
contradiction was allowed. The median number of cycles per net was 10. 
Presence or absence of tautology and contradiction does nit seem to 
the number of cycles per net. 

0 
0 5 IO 15 20 25 30 35 40 45 !  

affect 

0 
No of cycles per net 

FIG. 6. A histogram of the number of cycles per net in nets of 400 elements using neither 
tautology nor contradiction, but the remaining Boolean functions of two inputs equiprobably. 
The median is 10 cycles per net. The distribution is skewed toward few cycles. 

The log of the median number of cycles per net is plotted against log N 
in Fig. 7. The data appears to fall on a straight line with a slope of 0.5. Log 
number of cycles -0.5 log N. The expected number of modes of behavior is 
about JN/2. The number of cycles initially rises rapidly, then progressively 
slowly. By projection, nets of 1000 elements will have about 16 cycles, and nets 
of l,OOO,OOO about 500 modes of behavior. 

Since only 50 run-ins to each net were made, the data probably under- 
estimates the number of cycles per net. However, 200 run-ins per net rarely 
revealed more than 10% more cycles than had the first 50 run-ins of the 200; 
the data in Fig. 7, therefore, seems a good guide for the comparison of the 
number of cycles per net among nets of different sizes. 
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FIG. 7. The median number of cycles per net as N increases appears linear in a log/log 
plot. The slope is about 03. The expected number of cycles is slightly less than square root N. 

5.5. DISTANCE BETWEEN CYCLES 

The minimum possible difference between states on two distinct cycles is 1 
-a difference in the value of a single element. This distance occurs frequently 
but the minimum distance may be as large as 0.3N. Figure 8 is a scattergram 
of minimum distances between cycles correlated with the length of the cycles 
in many nets of 100 elements using all 16 Boolean functions. The median 
minimum distance between cycles is 5. The average distance between cycles 
is about 10. When a net embodies many cycles, these frequently form sets 
within which each cycle is a minimum distance of one from one or two 
members of the set. Between sets, the distance is larger and may be as great 
as 0*3N. 

5.6. NOISE PERTURBATIONS 

The effect of state noise on the behavior of K = 2 random nets has been 
studied by perturbing the system as it traverses a cycle by arbitrarily reversing 
the value of a single gene for a single time moment. The perturbed net may 
either return to the behavior cycle from which it was dislodged, or run in to 
a different cycle. The program first built a net, then explored it from 50 
randomly chosen initial states, and stored the different state cycles discovered. 
Then all states which differed by the value of one gene from each state of the 
first cycle discovered were tried, and the cycle to which each of these states 
ran was stored. From this, a row listing the number of times perturbation 
by one unit of noise shifted the system from the f&t behavior cycle to each of 
the cycles was compiled. The procedure was repeated for all remaining 
cycles, generating a square matrix listing of the transitions between cycles 
induced by all possible single units of noise. Division of the number in each 
cell of the matrix by the row total results in a matrix of transition probabilities 
under the drive of random (1 unit) noise, which is a Markov chain (see Fig. 10). 
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FIG, 8. A scattergram of the minimum distance between cycles and cycle length in nets of 
100 elements using alI 16 Boolean functions of two variables. Minimum distance between 
cycles appears uncorrelated with cycle length. The median minimum distance is O.OSN. 

Such chains are characterized by ergodic sets of states, transient states and 
absorbing states. If each behavior cycle in a binary net is considered a state 
of a Markov chain, then an ergodic set of cycles is defined to be a set in which 
each cycle can reach all members of the set by some path through them, but 
cannot reach a cycle outside the set. A transient cycle lies outside any ergodic 
set. Once the system reaches an ergodic region, it cannot return to the 
transient cycle. An absorbing cycle is an ergodic set consisting of a single 
cycle which always returns to itself after perturbation. Markov chains may, 
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FIG. 9. (a) The rotul number of cycles reached from each cycle after it was perturbed in 
all possible ways by one unit of noise correlated with the number of cycles in the net being 
perturbed. The data is from nets using neither tautology nor contradiction, with N = 191, 
and 400. (b) The number of cycles reached from each cycle with a probability greater than 
0.01 in the same nets as those of (a). In nets using all 16 Boolean functions, the total number 
of cycles reached from each cycle is about the same as the data in (b). 

of course, have more than one ergodic region; each or all may be accessible 
from a single or several transient cycles. 

Perturbation has been studied in nets ranging from 15 to 2000 elements. 
Nets larger than 400 elements used all 16 Boolean functions. In those of less 
than 400, both conditions-with and without tautology and contradiction- 
were simulated. In general, the net returns to the cycle perturbed with 
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probabilities between 0.85 and O-95. Behavior in randomly connected bin+ 
nets is highly stable to infrequent noise. 

One might have supposed that infrequent noise could induce a shift from 
each cycle to all others. This proves untrue. Transitions from a cycle are 
highly restricted; each cycle generally can shift to only one to six other cycles 
with probabilities of 0.01 to 0.05, and to a few others with probabilities between 
0.01 to O*OOOl. Most cycles cannot be directly reached from any single cycle 
[see Figs 9(a) and 9(b)]. 

Despite the restricted transition possibilities from each cycle in many 
instances, the entire cycle set forms one ergodic region. Equally frequently, 
a subset of the cycles forms one ergodic region, and the remaining cycles 
are transient cycles leading into the ergodic region, but not reachable from it. 
In the latter case, under infrequent noise, the system may progressively 
restrict the locale of its activity to the ergodic subset of cycles. 

In no case when all possible single units of state noise were explored has 
more than one ergodic region been found. Restriction of perturbation to the 
first 0.6N of the N genes, however, has on one occasion yielded two ergodic 
regions. Further restriction of perturbation to 0.05N renders multiple ergodic 
sets probable. 

One of the nets studied is presented in Fig. 10. The set of cycles form 
a single ergodic region, with transients leading into it. One would expect 
that in systems with several hundred cycles, more than a single ergodic region 
would be found. 

5.7. K = 3 NETS 

The occurrence of short cycle lengths and few cycles in random nets seems 
not to depend narrowly on an interconnection of two inputs per gene. 
I have simulated nets of 15, 20, 25 and 50 elements, each receiving three 
inputs from other elements, and allowed use of all 223 = 256 Boolean func- 
tions of three variables. Cycles were slightly longer, the number of cycles 
about the same as comparable nets of connectivity two. These characteristic 
behaviors of random nets seem to require only low connectivity to occur. 
The rate of their failure as K approaches N will require careful delineation. 

6. Discussion 
It is surprising that randomly constructed nets, in which each element is 

directly affected by two others, embody short, stable behavior cycles. The 
immense restriction of behavior in a K = 2 net of 1000 elements, limited to 
cycles a few hundred states in length, can only be appreciated in contrast to 
an expected state cycle length of 10’50 in a totally connected (K = N) net of 
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FIG. 10. (a) A matrix listing the 30 cycles of one net and the total number of times one unit 
of perturbation shifted the net from each cycle to each cycle. The system generally returns 
to the cycle perturbed. Division of the value in each cell of the matrix by the total of its 
row yields the matrix of transition probabilities between modes of behavior which con- 
stitute a Markov chain. The transition probabilities between cycles may be asymmetric. 
(b) Transitions between cycles in the net shown in (a). The solid arrows are the most probable 
transition to a cycle other than the cycle perturbed, the dotted arrows are the second most 
probable. The remaining transitions are not shown. Cycles 2, 7, 5 and 15 form an ergodic 
set into which the remaining cycles flow. If  all the transitions between cycles are included, 
the ergodic set of cycles becomes: 1, 2, 3, 5, 6, 12, 13, 15, 16. The remainder are transient 
cycles leading into this single ergodie set-. 
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the same size. 1015’ assumes its appropriate proportion when one remembers 
that 1O23 estimates the age of the universe in microseconds. 

Schrodinger (1944) noted that high molecular specificity, guaranteed by 
quantum stabilization, is required for the precision of biosynthesis in living 
things. The behavior of these randomly connected nets discloses an un- 
suspected, and, I believe, fundamental corollary to that precision. A molecular 
reaction net of high specificity is a net of low connectivity. High specificity 
appears necessary both for precision of product formation, and to yield a 
system whose global chemical oscillatory behavior is brief and stable. 

The hypothesis that living genetic nets are randomly assembled does not 
imply that one gene of these nets lacks a specific effect on a second. It asserts 
that if the “wiring diagram” of the specific repression and derepression 
connections between genes were known, it would be topologically in- 
distinguishable from a “wiring diagram” generated by random assignment of 
specific interactions between genes. The hypothesis is consistent with both 
the random modifications of protein structure induced by mutation, and 
the lack of steric similarity between the molecule mediating end-product 
inhibition of an enzyme, and the substrate of that enzyme. 

Biologically reasonable behavior in random nets occurs only if each element 
is directly affected by about the same low number of other elements as are 
macromolecules in living things. This correspondence lends support to the 
hypothesis that living metabolic nets are randomly constructed. 

7. Cell Cycle Time 

Among the most characteristic cyclic phenomena in cells is their replication. 
Van? Hof & Sparrow (1963) have studied the minimum division cycle time 
in cells of several species of higher plants. In their Fig. 3 [reproduced as 
Fig. 1 l(a)] they show the minimum cell replication time as a function of the 
DNA content per cell nucleus in six species of plants. The data fall nearly 
on a straight line. The authors conclude that, in higher organisms, minimum 
cell replication time is a linear function of the DNA content per nucleus 
[see Fig. 1 l(a)]. 

Projection of this linear function predicts that cells without DNA will 
require several hours to replicate; bacteria with little DNA per cell require 
about 30 min to replicate. A curve of replication time from organisms with 
little DNA per cell to higher organisms must start near the origin, rise 
rapidly as the amount of DNA per cell increases, then rise more slowly as 
the DNA per cell continues to increase. Van? Hof & Sparrow (1963) suggest 
the assumption of a second mechanism to control the time required for 
cell replication which would provide a steep linear slope from the origin, and 
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FIG. 11. (a) Van’t Hof & Sparrow’s (1963) Fig. 3 showing minimum cell replication time 
as a function of the DNA per nucleus for several plant species. (b) Projected cycle time in 
nets of 2 to 40 million binary genes using all 16 Boolean functions of two input variables, 
compared to Van’t Hof and Sparrow’s plot. In the range where Van? Hof and Sparrow 
report a linear relation, the binary net model predicts values which are nearly linear. 
Reduction in the number of elements assigned tautology or contradiction should raise 
expected cycle lengths and shift the nearly linear slope of the theoretical data to correspond 
closely with Van’t Hof and Sparrow’s data. 
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intersect their observed linear function among higher plants. Choice 01’ 
control mechanism would depend upon the nuclear content of DNA. 

I wish to show that a single principle, the hypothesis that living things are 
typical randomly interconnected reaction nets, is able to predict cell replica- 
tion time as a function of the number of genes per cell throughout a wide 
range of phyla. 

Estimates of the time required to switch a gene on or off lie between 5 and 
90 seconds (Goodwin, 1963). 1 will assume that about one minute suffices for 
a state transition in a real genetic net. Thus, if the model predicts a state cycle 
length of 100, the biochemical realization of the model should require about 
100 minutes to traverse its cycle of oscillatory chemical concentrations. 

In Fig. 12 I have plotted the logarithm of cell replication time in minutes 
against the logarithm of the estimated number of genes in that cell. for 
several species. The data include bacteria, protozoa, yeast, Aspr~gilh, sea 
urchin, chicken, mouse, rat, man, rabbit, dog, frog (and minimum cell 
replication time for) JGcia faba, and several other plants (see Table 1). The 

TABLE 1 

Data for Fig. 12 

Organism 

Bacteria 
Protozoa 
Sea urchin 
Chicken 
Mouse 
Rat 
Man 
Rabbit 
Dog 
Frog 
Vi& fuba 
Pisum sativutn 
Tradescantia paludosa 
Tulipa kaufmanniam 
Helianthus annuus 
Trillium erectwn 
Aspergillus nidulans 
Saccharomyces 

cervesiae 

DNA per cell 

Watson (1965) 
Nanney & Rudzinska (1960) 
Sparrow & Evans (1961) 
Vendrely (1955) 
Vendrely (1955) 
Vendrely (1955) 
Vendrely (1955) 
Vendrely (1955) 
Vendrely (1955) 
Vendrely (1955) 
Van’t Hof Br Sparrow (1963) 
Van’t Hof & Sparrow (1963) 
Van? Hof & Sparrow (1963) 
Van’t Hof & Sparrow (1963) 
Van’t Hof & Sparrow (1963) 
Van’t Hof & Sparrow (1963) 
Horowitz & Metzenberg (1965) 

Horowitz & Metzenberg (1965) 

Cell replication time 

Altman & Dittmer (1962) 
Altman & Dittmer (1962) 
Mazia (1961) 
Cleaver (1967) 
Cleaver (1967) 
Cleaver ( 1967) 
Cleaver ( 1967) 
Cleaver (1967) 
Cleaver ( 1967) 
Cleaver (1967) 
Van? Hof & Sparrow (1963) 
Van? Hof & Sparrow ( I963 j 
Van? Hof & Sparrow ( 1963) 
Van? Hof & Sparrow (1963) 
Van? Hof & Sparrow (1963) 
Van’t Hof & Sparrow (1962) 
Rosenberger & Kessel (1967) 

Williamson ( 196-I) 

number of genes per cell was estimated by comparison of its DNA per cell 
with that of Escherichiu coli, which Watson (1965) has estimated to have 
about 2000 genes. Based on these procedures, human cells embody about 
2,000,000 genes. 
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The median cellular replication time for bacteria, protozoa?, chicken. 
mouse, and man are also shown in Fig. 12. It is apparent that these median 
replication times fall very nearly on a straight line whose slope on a log/log 
plot is 0.5. The expected replication time in minutes is therefore about the 
square root of the estimated number of genes. The square root of N increases 
rapidly initially, then more slowly. 

The behavior of randomly interconnected reaction nets predicts this 
observed relation between DNA content and replication time. The length ot 
state cycles in random nets increases at almost the same rate as a function of 
the number of elements, as do cell cycle times as the number of genes increases. 
Based on the assumption that a state transition requires about one minute. 
the model, without tautology and contradiction, predicts a cycle time of 
about 50 minutes in a net of 2000 elements, and 16 hours in a net of 1 ,OOO,OOO. 
The rate of increase of cycle lengths in nets with and without tautology and 
contradiction are shown superimposed on the biologic data of Fig. 12. Cell 
replication time falls between the two. In nets using neither tautology nor 
contradiction, the asymptotic slope of the logarithm of the cycle length is 
about 0.6 log N; using all 16 Boolean functions the asymptotic slope is 
0.3. Decreasing the estimate of the time required for a state transition in a real 
genetic net from one minute to 0.5 minute, brings the theoretical curve for nets 
without tautology or contradiction into close agreement with the observed 
slope of log median cell replication times against log number of genes. 

In the range of DNA per cell where Van’t Hof & Sparrow (1963) describe 
a linear relation between the DNA content per cell and minimum replication 
time, the relation between net size and cycle length in nets using all 16 
Boolean functions is very nearly linear. The two slopes are of the same order 
of magnitude [see Fig. 1 l(b)]. Reduction in the number of elements assigned 
tautology or contradiction should bring the theoretical slope close to the 
observed. 

The model also appears to predict the distribution of replication times 
in cells with the same number of genes. Bacteria, with about the same 
number of genes-200~concentrate their replication times between 12 and 
100 minutes, and scatter them up to 2000 rarely. Random nets of 1000 

t Bacteria were assumed to have about the same DNA per cell content and to code for 
about 2000 genes. In protozoa, the number of genes per cell is difficult to estimate due to 
the macronucleus. I have treated all protozoa as having about the same number of genes 
per cell, and estimated this number by dividing the cellular DNA content in Terrahymena 
by the ratio of macronucleus DNA to micronucleus DNA in Purumecium. 

I assume the DNA per cell in Aspergillus niduluns is about equal to that in Neurosporcr 
crassa. Rosenberger & Kessel (1967) chose growth media to yield disparate replication 
times in Aspergillus (1.4, 1.8, 3.7,4-7,7.0,9.0 hr). I assume the first three represent relatively 
normal values. 
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elements, using neither tautology nor contradiction, concentrate their state 
cycle lengths between 10 and 100 states, and scatter them up to 2000 to 10,000 
rarely. In Fig. 12 are several state cycle lengths in nets of 1000 elements. 
The distribution is similar to that for bacterial replication times. Both 
distributions are skewed toward short cycle lengths in a linear plot. A more 
rigorous test of their similarity lies in the fact that both remain skewed 
toward short cycles in a logarithmic plot, as shown in Fig. 12. 

The single hypothesis that living things behave as typical randomly 
connected switching nets appears to predict moderately well both the rate of 
increase in the median replication time as the DNA content of cells increases, 
and also the distribution about that median of replication time. 

Is this correspondence coincidental? Replication of the DNA in higher 
organisms is known to be initiated at many independent sites. Initiation of 
replication along any small segment of a chromosome is thought to require 
the activity of a “replicon”, and protein synthesis (Mazia, 1961). If these 
replicons f;orm elements in the total metabolic net of the cell, depending for 
their own initiation upon the previous synthesis of other materials, it would 
not be unduly surprising hat the periodicity of their activity, the S period, 
is bound by the periodicity of the entire metabolic net. 

Viewing the periodicity of the cell cycle as an expression of state cycles in a 
randomly connected net may account for the lack of effect upon cell replica- 
tion time of increasing polyploidy (Van? Hof, 1965). Increasing the number 
of copies of each gene shifts the expression (of the set of copies) of a gene 
from a binary variable, when there is only one copy, towards a continuous 
variable, without altering the connections between or function assigned the 
genes. The set of copies of a gene would now be capable of a graded output 
depending upon how many product molecules of its input genes were present. 
Several arguments (Walter, Parker & Yeas, 1967) suggest that if each element 
(here element = the set of copies of a gene) in a net realizes a cotinuous. 
appropriately nonlinear function (e.g. sigmoid) of its inputs, then the net 
behaves as though it were comprised of binary devices. In this circumstance, 
cycle lengths should not be greatly changed by increasing polyploidy. 

Unorderly nets in which each component directly affects very few others 
appear to behave with stability as great as that in living things. States on a 
cycle are similar to each other; only about 15 y0 of the elements change value 
during a cycle. The remainder emit a constant output. Even more surprising 
is the stability shown by random nets to random, one unit noise. In these 
computer simulations a net was often perturbed from any behavior cycle 
4000 times or more. Systems perturbed from a cycle return to that cycle 
with probabilities of about 90%. While there is little data on the stability of 
a cell’s metabolic behavior to infrequent noise, the behavior of random nets 
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seems to demonstrate sufficient stability to qualify as a model of cellular 
stability in the face of biochemical noise. 

8. Cellular Differentiation 
The principles underlying cellular differentiation remain among the most 

enigmatic in biology. We are required to explain the spontaneous generation 
of a multiplicity of cell types from the single zygote, to deduce a natural 
tendency of a system to become increasingly heterogeneous, then to stop 
differentiating. 

Among the important characteristics of cell differentiation are: initiation 
of change; stabilization of change after cessation of stimulus; the efficacy of 
many substances, exogenous and endogenous, as inductive stimuli; a limit 
of five or six as the number of cell types which may differentiate directly from 
any cell type; progressive limitation in the number of developmental path- 
ways open to any small region of the embryo; restricted periods during which 
a cell is competent to respond to an inductive stimulus; the discreteness of 
cell types, that is, the mutually exclusive constellations of properties by 
which cells differ; a requirement for a minimal and preferably heterogeneous 
cell mass to initiate differentiation in many instances, and to maintain it in 
some; the occurrence of metaplasia between undifferentiated cell types, or 
from an undifferentiated type to a specialized type, but the lack of metaplasia 
(the isolation) between specialized cell types; and the cessation of differentia- 
tion (Grobstein, 1959). 

I believe many aspects of differentiation to be deducible from the typical 
behavior of randomly built genetic nets. 

Cells are thought to differ due to differential expression of, rather than 
structural loss of, the genes. Differential activity of the genes raises at least 
two questions which are not always carefully distinguished: the capacity of 
the genome to behave in more than one mode; and mechanisms which insure 
the appropriate assignment of these modes to the proper cells. The second 
presumes the first. 

Randomly assembled nets of binary elements behave in a multiplicity of 
distinct modes. Different state cycles embodied in a net are isolated from 
each other, for no state may be on two cycles. Thus, a multiplicity of state 
cycles, each a different temporal sequence of genetic activity, is to be expected 
in randomly constructed genetic nets. It seems reasonable to identify one cell 
type with one state cycle. To the extent that this binary model, in which the 
expression of the “gene” is potentially reversible at each clocked moment, is 
accurate, it demonstrates the common occurrence of multiple modes of 
behavior in a genetic system. 

Tf this identification is reasonable, the typical number of cycles in a random 
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“genetic” net must be of the same order of magnitude as the number of cell 
types in organisms with the same number of genes. 

Estimates of the number of cell types in an organism are hazardous, but 
the number in man may be placed at about 100; in annelid worms, at 57; in 
jellyfish, between 20 and 30; in hydra, between 11 and 17; in sponges, about 
12-14; in Neurospora crassa, 5; in algae, 5; and in bacteria, 2, vegetative and 
spore (see Table 2). The logarithm of the values are plotted against the 

TABLE 2 

Data for Fig. 13 

Organism DNA per cell Number of cell types 

Man 
Sponge 

Jellyfish 

Cenadidia 

Newospora crassa 
Saccharomyces 

cervesifle 
Algae 
Hydra1 
Bacteria 

Vendrely (1955) Grobstein (1959) 
Sparrow & Evans (1961) Estimated from 

Borradaile, Potts, 
Eastham & Saunders (1958) 

Sparrow & Evans (1961) Estimated from 
Borradaile, Potts, 
Eastham & Saunders (1958) 

Mirsky & Osawa (1961) Estimated from 
Borradaile, Potts, 
Eastham & Saunders (1958) 

Horowitz & Metzenberg (1965) Baldwin & Rusch (1965) 

Horowitz & Metzenberg (1965) Baldwin & Rusch (1965) 
Horowitz & Metzenberg (1965) Baldwin & Rusch (1965) 

? Macklin (1968) 
Watson (1965) Macklin (1968) 

t The DNA per cell in hydra presumably lies between sponge and jellyfish. 

logarithm of the estimated number of genes per cell in each organism, in 
Fig. 13. A straight line has been drawn through these values; its slope is 0.5. 

The logarithm of the number of independent cycles in a random net is also 
about 0.5 logarithm of the number of genes. By projection of the data 
established in Fig. 7, nets with about 16,000 genes (comparable to the sponges) 
should have about 120 cell types, and man, with an assumed 2900,000 genes, 
about 700 cell types. These theoretical predictions are also plotted in Fig. 13. 

The rate of increase in the number of cycles in random nets as N increases 
appears almost identical to the rate of increase in the number of cell types of 
an organism as the number of genes increases. The theoretical curve is shifted 
to the left, however, and predicts more cell types than are actually counted. 

T.B. 30 
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FIG. 13. The logarithm of the number of cell types is plotted against the logarithm of the 
estimated number of genes per cell, and the logarithm of the median number of state cycles 
is plotted against logarithm N. The observed and theoretical slopes are about 0.5. Scale: 
2 x lo6 genes per cell = 6 x 10-12g DNA per cell. 

The predictions remain well within an order of magnitude of the biologic 
data. 

Caution is required for several reasons : large nets have not been simulated ; 
these nets use binary elements, nets of greater verisimilitude must be studied; 
estimates of the number of cell types in an organism, or the number of genes 
in that organism are only approximate. 

The biologic data need not fall on a straight line in order to remain com- 
patible with this model. Account must be taken of the distribution of the 
number of cycles found in nets of any given size. The distribution of the 
number of cycles per net is skewed toward few cycles, as shown in Fig. 6. 

With these reservations, I think it fair to say that the correspondence 
between the predicted number of independent modes of behavior in randomly 
interconnected nets and the observed number of cell types in organisms is 
good. 

Cells differ from one another in the possession of a constellation of 
properties which do not intergrade. Similarly, cycles in random nets may be 
compared for the minimum dissimilarity between their states. In nets of 
100 elements, the minimum distance between cycles is commonly 0.05N to 
0.25N. Like cell types, behavior cycles are generally separated from one 
another by a constellation of properties. Since no state may lead to two states. 
hence be on two cycles, state cycles, like cell types, are mutually exclusive. 
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If the multiplicity of modes of behavior in a random net helps elucidate the 
capacity of the genome to behave in more than one way, the appropriate 
segregation of these modes of behavior to the correct cells requires explan- 
tion. Biochemical noise may play a very large role in directing that segregation. 
A theory which assigns to biochemical noise the task of segregation of 
different modes of genetic behavior to different cells offers great advantages. 
Biochemical noise is ubiquitous, unavoidable, and therefore reliable. It 
remains to show that biochemical noise in a randomly cross coupled genetic 
net can produce orderly sequential segregation of behavior modes to the 
appropriate cells. 

Perturbation of nets, behaving on cycles, by one unit of noise generally 
had only a transient effect on the systems behavior. With a probability of 
about 0.9, the system returned to the cycle perturbed. Of the remaining O*lN 
noisy inputs, these caused the system to shift from any cycle to at most one to 
six other cycles with probabilities greater than 0.01, and a few more with 
probabilities below O-01. It is therefore of considerable interest that, through- 
out phylogeny, no cell differentiates directly into more than a few other cell 
types. Restriction in the possible transitions between modes of behavior 
appears to be characteristic of both random nets and cell types. 

The spontaneous generation of a multiplicity of cell types from a single 
cell type follows explicitly from this model. The occurrence of infrequent 
noise induces on the cycles of a randomly constructed net the transition 
probabilities between them which form a Markov chain. Such a chain must 
have at least one ergodic region-a set of cycles each of which can reach all 
cycles of that set, but no other cycles. It may have transient cycles lying out- 
side the single ergodic set, reaching into, but not reachable, from that set. 
It also may have more than a single ergodic set; each ergodic set must be 
isolated from all other ergodic sets, however, all may be reachable from some 
single transient either directly, or via other transients. 

Let the net embody only a single ergodic set of cycles. If placed on any 
cycle in the set and perturbed by noise, the system will “spontaneously” pass 
from cycle to cycle along the allowed transition pathways. An isolated cell 
would appear to oscillate among its modes of behavior, driven by external 
noise. If the net is a replicating cell, the clone will explore the permitted 
transition pathways between cycles and populate the ergodic set according to 
the asymptotic transition probabilities between the cycles. Cells will spon- 
taneously start to change, pass down restricted pathways of development, 
populate the complete set of possible modes of behavior, and settle to some 
stable distribution. Since the net, by hypothesis, embodies only a single 
ergodic set, each cycle may reach all; differentiation of any cell cannot be 
stable, a cell of one type should occasionally “spontaneously” change to 
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become a cell of a different type. Since all types may be reached from any’ 
type, deletion of a subset of cell types should create a net movement of cells 
into the type of cells removed-regeneration should occur. 

Stable, irreversible differentiation would require either location in a 
microenvironment in which the “noise” was sharply biased by the neighboring 
cell types, or, more fundamentally, a multiplicity of ergodic regions. 

Assume a net with more than a single ergodic set. (I have not yet found 
such a net.) Let there be a transient which reaches, via other transients, into 
all ergodic sets. Call this transient cycle the zygote. Let it replicate. Then, 
the zygote is totipotent with respect to all its ergodic regions. We may 
explain the initiation of differentiation; the zygote is on a Markovian transient 
cycle in a noisy environment and must eventually leave. We may explain the 
cessation of differentiation; the system enters an ergodic set and becomes 
trapped. We have deduced the apparently spontaneous generation of hetero- 
geniety. As the system passes, goaded by noise, from the zygote toward some 
ergodic set, it must pass branch points to other ergodic sets. Before reaching 
such a branch point, no noise will move it to that ergodic set; while passing, 
noise will so move it; after passing, the system will not be competent to 
respond to noise and reach that ergodic set. Hence we expect the competence 
of limited duration, the efficacy and reliability of noise as the stimulus for 
induction, the aid to differentiation provided by contact with heterogeneous 
tissue as a source of noise; stabilization of change after its induction and the 
branch point is passed; progressive restriction of developmental pathways as 
branch points to ergodic sets are passed: limitation in the number of cell 
types which may arise directly from any cell type; difficulty of metaplastic 
transformation between specialized cells (in different ergodic sets), and the 
possibility of metaplastic transformation between undifferentiated (transient) 
and specialized cell types. Let the net replicate during this perturbation and 
a particular number will pass down each transition from each cycle, reach 
each ergodic set, occupy all allowable cycles and distribute themselves accord- 
ing to the asymptotic transition probabilities between cycles and replication 
rates of each cell type. Grant death to some, and a steady-state population of 
various cell types arises. Because cells are trapped in separate ergodic regions, 
overall regeneration is not possible. Within each region, restricted regeneration 
remains possible. Wounds heal. 

Earlier, I alluded to the argument (Walter et al., 1967) that a set of elements 
whose outputs are sigmoid functions of their inputs behave as a set of binary 
devices. If true, this suggests that the results obtained for binary nets, rather 
than being highly simplified approximations, may approach closely to an 
accurate solution of the behavior of randomly interconnected, biologically 
appropriate nonlinear, metabolic nets. 
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Study of the typical behavior of randomly-assembled determinate nets has 
barely begun. Further research is now needed to extend these results to larger 
nets; to study the effect of different numbers of inputs per element; to establish 
firmly the behavior of nets whose elements realize biologically appropriate 
continuous or probabilistic functions on their inputs; to find the effect of 
increasing levels of state noise, and more particularly, of “biased” noise due 
to spatial proximity with other copies of the net behaving on different cycles, 
and to study the effect of mutation-random alteration in the structure of the 
net, on its behavior. 

While the model has been developed to study cellular control processes, 
it is formally identical to nerve net models and may find application in other 
branches of science. 

9. Conclusion 

A living thing is a richly interconnected net of chemical reactions. One 
can little doubt that the earliest proto-organisms aggregated their reaction nets 
at random in the primeval seas; or that mutation continues to modify living 
metabolic nets in random ways. Evolution, therefore, probably had as its 
initial substrate the behavior of randomly aggregated reaction nets. 

It is a fundamental question whether two billion years of survival pressure 
have succeeded in selecting from a myriad of unorderly reaction nets those 
few improbable, that is non-random and ordered, metabolic nets which alone 
behave with the stability requisite for life; or whether living things are akin 
to randomly constructed automata whose characteristic behavior reflects 
their unorderly construction no matter how evolution selected the surviving 
forms. 

The data I have presented suggest: that large, randomly interconnected 
feedback nets of binary “genes” behave with the stability requisite for life; 
that they undergo short stable cycles in the states of their constituents; 
that the time required for these behavior cycles parallels and predicts the time 
required for cell replication in many phyla; that the number of distinguishable 
modes of behavior of a randomly constructed net predicts with considerable 
accuracy the number of cell types in an organism which embodies a genetic 
net of the same size; that, like cells, a random net is capable of differentiating 
directly from any one mode of behavior to at most a few of its other modes; 
and that these restricted transition possibilities between modes of behavior 
allow us to state a theory of differentiation which deduce the origin, sequence, 
branching, and cessation of differentiation as the expected behavior of 
randomly assembled reaction nets. 

If original proto-organisms built their reaction nets randomly, it behoves 
the biologist to build an adequate theory of the behavior of these systems; 
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such a theory should elucidate the problems of biosynthetic organization 
faced by early living forms. But, if extant biota are also randomly constructed, 
then an adequate theory of the behavior of randomly assembled reaction nets 
would constitute an appropriate theory in which to describe the metabolic 
behavior of nets throughout phylogeny. The correspondence between the 
behavior of randomly interconnected nets of binary “genes” and the range of 
biologic data described above, suggest that organisms may indeed form a 
single population of typical randomly constructed reaction nets. Only if 
living things do form a single population does a general theory of metabolic 
behavior seem a reasonable goal for theoretical biology. The consequence of 
such a theory would be our ability to deduce, not merely describe, metabolic 
behavior from general propositions about the behavior of any randomly 
constructed feedback net; and to do so about genetic nets whose exact 
construction we do not, and may never, know. 

Large, randomly assembled nets of binary elements behave with simplicity, 
stability, and order. It seems unlikely that Nature has made no use of such 
probable and reliable systems, both to initiate evolution and protect its 
progeny. 

This research was supported under USPHS 5T5 GM 43-05 and USPHS I-SO-1 
FR 5355-04, and partially through the USAEC. A portion of the work was done 
while a Visiting Scientist at the Research Laboratory of Electronics, M.I.T. from 
15th September 1967 to 15th December 1967. 

The author wishes to thank Drs Laurel Glass, Sheldon Wolff, Harvey Patt, 
John Heddle, Creyton Walker, and Warren S. McCulloch for their encouragement 
and criticism; and Marvin Minsky for making available the use of project MAC 
computer time while at M.I.T. 

REFERENCES 
ALTMAN, P. L. & DITTMER, D. S. (1962). Growth. 
APTER, M. J. (1966). “Cybernetics and Development”. Oxford: Pergamon Press. 
BALDWIN, H. H. & RUSCH, A. P. (1965). Ann. Rev. Biochem. 34, 565. 
BONNER, J. F. (1965). “The Molecular Biology of Development”. London: Oxford 

University Press. 
BORRADAILE, L. A., POTTS, F. A., EASTHAM, L. E. S. & SAUNDERS, .I. T. (1958). “The In- 

vertebrata”, 3rd ed. Cambridge University Press. 
BRETSCHER, M. S. (1967). Nature, Lord. 217, 509. 
CLEAVER, J. E. (1967). “Thymidine Metabolism and Cell Kinetics”. Amsterdam: North 

Holland. 
GOODWIN, B. C. (1963). “Temporal Organization in Cells”. London: Academic Press. 
GROBSTEIN, C. (1959). If7 “The Cell”, Vol. I., p. 437. London: Academic Press. 
HOROWITZ, N. H. & Metzenberg, R. L. (1965). Ann. Rev. Biochem. 34, 527. 
JACOB, F. & MONOD, J. (1963). 21st Symp. Sot. Study of Development and Growth. 

London : Academic Press. 
KAUFFMAN, S. A. (1967). J. Theoret. Biol. 17, 483. 
MACUIN, M. (1968). Nature, Lond. 217, 622. 
MAZIA, D. (1961). Z?z “The Cell”, Vol. III, p. 77. New York: Academic Press. 



RANDOM GENETIC NETS 467 

MIRSKY, A. E. & OSAWA, S. (1961). In “The Cell”, Vol. II, p. 677. New York: Academic 
Press. 

NANNEY, D. L. & RUDZINSKA, M. A. (1960). In “The Cell”, Vol. IV, p. 109. New York: 
Academic Press. 

ROSENBERGER, R. F. & KESSEL, M. (1967). J. Bact. 94, 1464. 
RUBIN, H. & SITGREAVE, R. (1954). “Probability Distributions Related to Random Trans- 

formations on a Finite Set”. (Tech. Report No. 19A, Appl. Maths. and Stats. Lab, 
Stanford University). 

SCHRODINGER, E. (1944). “What is Life?” Cambridge University Press. 
SLONE, N. J. H. (1967). “Lengths of Cycle Time in Random Neural Networks”. Ithaca: 

Cornell University Press. 
SPARROW, A. H. & EVANS, H. J. (1961). Brookhaven Symp. Biol. 14,76. 
SLJGITA, M. (1963). J. Theoret. Biol. 4, 179. 
VAN’T HOF. J. (1965). ExpI. Cell Res. 37, 420. 
VAN? HOF, J. & SPARROW, A. H. (1963). Proc. natn. Acad. Sri., U.S.A., 49, 897. 
VENDRELY, R. (1955). In “The Nucleic Acids”, Vol. II. p. 155. New York: Academic Press. 
WALKER, C. C. & ASHBY, W. R. (1965). Kybernetics, 3, 100. 
WALTER, C., PARKER, R. & YCAS, M. (1967). J. Theoret. Biol. 15, 208. 
WATSON, J. D. (1965). “Molecular Biology of the Gene”. New York: W. A. Benjamin, Inc. 
WILLIAMSON, D. H. (1964). In “Synchrony in Cell Division and Growth”. (E. Zeuthen, 

ed.) p. 351. New York: Wiley. 


