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“The world is either the effect of cause or
chance. If the latter, it is a world for all
that, that is to say, it is a regular and
beautiful structure.”

Marcus Aurelius

Proto-organisms probably were randomly aggregated nets of chemical
reactions. The hypothesis that contemporary organisms are also randomly
constructed molecular automata is examined by modeling the gene as a
binary (on-off) device and studying the behavior of large, randomly con-
structed nets of these binary ‘“‘genes”. The results suggest that, if each
“gene’ is directly affected by two or three other “genes”, then such random
nets: behave with great order and stability; undergo behavior cycles
whose length predicts cell replication time as a function of the number of
genes per cell; possess different modes of behavior whose number per net
predicts roughly the number of cell types in an organism as a function of
its number of genes; and under the stimulus of noise are capable of
differentiating directly from any mode of behavior to at most a few other
modes of behavior. Cellular differentation is modeled as a Markov chain
among the modes of behavior of a genetic net. The possibility of a general
theory of metabolic behavior is suggested.

1. Introduction
A living thing is a complex net of interactions between thousands or millions
of chemical species. A fundamental task of biology is to account for the origin
and nature of metabolic stability in such systems in terms of the mechanisms
which control biosynthesis. In the thermodynamics of gases, the mathematical
laws of statistics bridge the gap between a chaos of colliding molecules and the
simple order of the gas laws. In biology, a gene specifies a protein, and the
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output of one gene can control the rate of output of a second. The mathe-
matical laws which engage large nets of interacting genes into biosynthetic
coherence remain to be elucidated.

In this article I report the behavior of large nets of randomly interconnected
binary (on-off) “genes”. The motives for this choice of model are many.

The analogy of genetic repression and derepression with digital computers
has suggested to several authors (Jacob & Monod, 1963 ; Apter, 1966 ; Bonner,
1965; Sugita, 1963; Kauffman, 1967) that the genome embodies complex
switching circuits which constitute a program for metabolic stability and cell
differentiation, rather than providing a coded description of these phenomena.

It is a fundamental question whether metabolic stability and epigenesis
require the genetic regulatory circuits to be precisely constructed. Has a
fortunate evolutionary history selected only nets of highly ordered circuits
which alone insure metabolic stability; or are stability and epigenesis, even
in nets of randomly interconnected regulatory circuits, to be expected as the
probable consequence of as yet unknown mathematical laws? Are living
things more akin to precisely programmed automata selected by evolution,
or to randomly assembled automata whose characteristic behavior reflects
their unorderly construction, no matter how evolution selected the surviving
forms?

In this article T present evidence that large, randomly connected feedback
nets of binary “‘genes’ behave with stability comparable to that in living
things; that these systems undergo short stable cycles in the states of their
constituents; that the time course of these behavior cycles parallels and
predicts the time required for cell replication in many phyla; that the number
of distinguishable modes of behavior of one randomly constructed net
predicts with considerable accuracy the number of cell types in an organism
which embodies a genetic net of the same size; that, like cells, a randomly
connected genetic net is capable of differentiating directly from any one mode
of behavior to at most a few of its other modes; and that these restricted
transition possibilities between modes of behavior aliow us to state a theory
of differentiation which deduces the origin, sequence, branching, and cessation
of differentiation as the expected behavior of randomly assembled genetic nets.

Mathematical insight into the behavior of randomly connected feedback
systems is slight. Goodwin (1963) has treated the gene as a continuously
oscillating biochemical element whose output of mRNA is repressed by the
protein specified. To study coupled systems of such biochemical oscillators,
Goodwin was constrained by the conditions of integrability to restrict cross-
coupling between genes to be symmetrically repressive and form a linear
sequence in which no gene represses more than its two neighbors. There is no
reason, however, to suppose that the crossreactions between real genes are
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similarly constrained. To study the behavior of nets with arbitrarily complex
couplings requires us to abandon the effort to obtain an integral of motion
for the system (Goodwin, 1963).

Several considerations suggest the advantage of modeling the gene as a
binary device, able only to be on or off. The most fundamental of measures is
the binary category scale. Use of these simplest devices facilitates study of the
behavior of truly complex nets; the behavior of randomly connected, but then
fixed, nets of binary components should provide a reliable guide to the
behavior of similar systems whose components’ behavior are described by
continuous or probabilistic functions; synthesis of mRNA is, in fact, probably
an all or none binary process; the number of repressor molecules per gene is
thought to be less than about 12 (Bretscher, 1967), therefore it seems
preferable to treat the activity of a gene as a discrete, not continuous, function
of its input.

To study the behavior of randomly interconnected nets requires a definition
of the population from which equiprobable sampling is to be done. A distinct
advantage in the choice of a binary model for gene activity is that the number
of different possible rules by which a finite number (K) of inputs may affect
the output behavior of a binary element is finite ~ 22X (see Fig. 1). This
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FiG. 1. (a) W, X, and Y are each binary devices which act as inputs to Z, another binary
device. The 3 x 8 matrix of 1 and 0 below W, X, Y list the eight possible configurations of
input values to element Z. The column under Z assigns to it the value it will assume one
moment after each input configuration. (a) is one of the 22* = 256 Boolean functions of
three variables. (b) The 22* = 16 Boolean functions of two input variables are derived by
filling the column under Z with 1 and 0 in all possible (16) ways. Function 1 is contradiction,
2 is and, 16 is tautology.
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allows construction of switching nets which are random in two different, but
well defined, senses: the K inputs to each binary “‘gene” may be chosen at
random; the effect of those inputs on the recipient element’s output behavior
may be randomly decided by assigning at random to each element one of the
possible 2*¥ Boolean functions of its inputs. Once built, the nets I have
studied remained fixed in the choice of inputs to each gene, and their effect
on its output.

The number of genes whose products directly affect the output of any gene
is not known. Therefore, I have studied nets in which each gene has direct
inputs from all genes, nets with one input per gene, nets with two inputs per
gene, and nets with three inputs per gene.

Since the autonomous, undriven behavior of a system must be elucidated
before the effect of exogeneous inputs can be understood, 1 have studied the
behavior of switching nets free of external inputs. A bacterium in a constant
environment undergoes autonomous changes in the concentrations of
molecular species, and the sea urchin, in a similarly homogeneous surrounding,
develops in an orderly sequence of states from its zygote. Since constant
external input to a net is equivalent to a similar net held free of external input,
stable oscillations of chemical species and cell differentiation seem to be largely
autonomous behaviors of metabolic nets.

The study of randomly constructed but deterministic switching nets forms
a poorly developed area of automata theory. Walker & Ashby (1965) have
examined the effect of the choice of Boolean function on the behavior of
randomly interconnected nets of binary elements. They simulated nets in
which each of the 100 elements received a feedback input from itself, and
randomly assigned inputs from two other elements. For each experiment,
all elements of the net were assigned the same Boolean function.

These nets embody behavior cycles (described in detail below). They found
that the choice of the Boolean function assigned to all the elements markedly
affected the length of these behavior cycles. Some functions (e.g. “and™)
yield very short cycles, others (e.g. “exclusive or”) yield cycles of immense
length.

Since there is no reason to suppose that, in living genetic reaction nets,
all elements are assigned the same Boolean function, I have studied nets in
which all the 22X possible Boolean functions are assigned randomly, one to
each element.

2. Genetic Model

On these considerations, the gene is modeled as a binary device able to
realize any one, but only one, of the possible Boolean functions of its K
inputs. If the activity of a formal gene, for brevity, gene, at any time is 1,
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then the value of all its output lines at time T+ 1 is simultaneously 1. Thus,
the state of the outputs of a gene at 7+ 1 depends on its activity at time T
alone. For our logical analysis, it is sufficient to allow time to occur in dis-
crete, clocked moments: 7=1,2,3....

A formal genetic net is constructed by choosing a value of N, the number
of elements comprising the net, and of K, the number of input lines to any
gene. Each gene in the net receives exactly K inputs, one from each of X
formal genes in N. Inputs arise only from members of N. On the average.
each element has K output lines. Nets are randomly constructed in two distinct
senses. The K inputs to each gene are chosen randomly; to each gene one of
the 22X Boolean functions of its K inputs is assigned randomly. After being
assembled, these nets are deterministic. We assume that all genes compute
one step in one clocked time unit.

Such a genetic net is a finite sequential atuomation, a machine with a finite
number of states and a function mapping each state into a subsequent state
(see Fig. 2). A state of the net is described by a row which lists the present
value, 1 or 0, of each of the N elements of the net. Each gene can be inde-
pendently on or off, thus there are just 2V distinct states of a net of N binary
elements.

If the system is placed in some state at time 7, then at T+ 1 each gene
scans the present value of each of its K inputs, consults its Boolean function,
and assumes the value specified by the function for that input configuration.
The net passes from a state to only one subsequent state; therefore, although
two states may converge on to a single subsequent state, no state may diverge
on to two subsequent states. (The system is state determined.)

There are a finite number of states. As the system passes along a sequence
of states from any arbitrarily chosen initial state, it must eventually re-enter a
state previously passed. Thereafter, the system cycles continuously through
the re-entered set of states, called a cycle. The cycle length is defined as the
number of states on a re-enterant cycle of behavior. A state which re-enters
itself, a cycle of length one, is called an equilibrial state. Since more than one
state may converge on a single state, the state re-entered need not be the
arbitrarily chosen initial state. The transient (or run-in) length is the number of
states between the arbitrarily chosen initial state and the first state encountered
on a cycle. A confluent is the set of states leading into, or on, a cycle; the size
of a confluent is the number of states comprising it. Each state lies on a single
confluent [(see Fig. 2c)].

A formal genetic net must contain at least one behavior cycle; it may
contain more. By releasing the net from many different states, each of which
runs to only one cycle, the total number of different cycles reached may be
counted. The number of cycles embodied in a net is the number of different



442 S. A. KAUFFMAN

71
| X
0
|
o
0
Y
T+
Y
0
0
0
I
(b) T T+
xYzxvz @
000|000 I (010)
00 1|1 0! \
01 0[/00 |
01 1100 I (100)——= (001} —=(i01)
1 00/000 /
Lo 1l 10 (011) (10}
I 1 0{0 O | s
[ I N O arny

FiG. 2. (a) A net of three binary elements, each of which receives inputs from the other two.
The Boolean function assigned to each element is shown beside the element. (b) All possible
states of the 3-element net are shown in the left 3 <8 matrix below 7. The subsequent state
of the net at time 71, shown in the matrix on the right, is derived from the inputs and
functions shown in (a). (¢) A kimatograph showing the sequence of state transitions leading
into a state cycle of length 3. All states lie on one confluent. There are three run-ins to the
single state cycle.

behavior cycles of which the net is capable. Since no state can diverge on to
two subsequent states, no state on one cycle can simultaneously be on a
second cycle. Different cycles in one net are behaviorally isolated from one
another.

A distance measure comparing two states of the net may be defined as the
number of genes with different values in the two states. (For example. the
state (00000) of a 5 gene net, and the state (00111) differ in the value of three
elements.) This distance is used as a measure of dissimilarity between sub-
sequent states on a transient as the system approaches a cycle, between
subsequent states along cycles, and between cycles.

As the net passes along a sequence of states on a cycle, one unit of noise
may be introduced by arbitrarily changing the value of a single gene for one
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time moment. After perturbation, the system may return to the cycle perturbed,
or run into a different cycle. In a net of size N there are just N states which
differ from any state in the value of just one gene. By perturbing all states on
each cycle to all states a distance of one, a matrix may be obtained listing the
total number of times the system returned to the cycle perturbed, or ran into
any of the other possible cycles. Dividing the value in each cell of this matrix
by its row total yields the corresponding matrix of transition probabilities
between cycles, under the drive of random, one unit, noise. Such a matrix is
a Markov chain. The probability of transition from one cycle to a second
need not be identical with the probability of transition from the second to the
first. Thus, state noise may induce asymmetric probabilities of transition
between the independent behavior cycles of the net.

3. Totally Connected Nets, K = N

In random nets in which each element receives an input from all elements,
the state subsequent to each state is chosen by sampling at random from an
infinite supply of the 2V distinct states of the net. The characteristics of such
a random mapping of a finite set (2V) of numbers into itself has been solved
(Rubin & Sitgreave, 1954). The expected length of the behavior cycle is the
square root of the number (27) in the set. Therefore, in totally connected nets
with 200 elements and 22°° states, the expected cycle length is 2!°° ~ 103°
states. If the transition from one state to the next required one microsecond,
then the time required for a net of 200 elements to traverse its cycle is about
10,000,000 times Hubbel’s age of the universe. Totally connected, random
nets are biologically impossible.

4. One Connected Nets, K = 1

Random nets in which each element receives just one input are no more
biologically reasonable than totally connected nets. The structure of a one
connected net breaks into separate loops of elements (as in Fig. 2(c) with the
direction of all arrows reversed). State cycles arise whose lengths are a
maximum of two times the lowest common multiple of the set of structural
loop lengths. For random nets as small as 200, the state cycles generally
exceed several millions of states in length (Slone, 1967). One connected
random nets possess behavior cycles capable of realization by no earthly
organism,

5. Two Connected Nets, K = 2

The behavior of randomly interconnected, deterministic nets in which each
element received just two inputs from other elements is biologically reason-



444 S. A. KAUFFMAN

able. 1 have studied nets of 15, 50, 64, 100, 191, 400, 1024, 4096 and 8191
elements both by simulation on digital computers and analytically. Nets of
1000 elements possess 2'°°° ~ 103°° possible states. The typical net is
restricted to cycle among 12 of these states.

The program used constructs a net of size N by random assignment of the
two inputs and one of the 22* = 16 Boolean functions to each binary gene.
The net is placed in an arbitrary initial state (for example, with each gene
switched off) and, at successive time moments, computes its next state. Each
of the sequence of states along a run-in is compared with all previous states,
and when the present state is identical to a state of the system x moments
previously, a cycle whose length is x states has been identified. If undisturbed,
the system would cycle through these x states repeatedly.

5.1. CYCLES

Cycle lengths in such nets are exceptionally short. Data was obtained for
at least 100 nets at each of several different sizes, and a histogram of the
cycle lengths found in each size net was compiled. Figure 3(a) presents a
histogram of cycle lengths found in nets of 400 elements which used all 16
Boolean functions of two inputs equiprobably. The distribution of cycle lengths
is markedly skewed toward short cycle lengths. Generally, the modal cycle
length is less than the median length, which, in turn, is less than the mean
cycle length. Here the modal length is 2, the median is 8, and the mean is 98.
Equilibrial states (those which successively become themselves) are common.

Among the 16 Boolean functions of two inputs [see Fig. 1(b)], two are
tautology and contradiction. An element assigned tautology is switched on
regardless of the previous input values. An element assigned contradiction is
constantly off. Thus, 2/16 = 1/8 of the elements in a X = 2 random net are
foci of constancy. These foci might be thought necessary to produce short
behavior cycles. This is untrue. Nets were also studied in which these two
functions were disallowed and the remaining 14 Boolean functions assigned
equiprobably. The effect is to increase slightly the expected cycle length in
nets of any given size and to shift the distribution of cycle lengths in nets of a
given size from that found with all 16 Boolean functions. In Fig. 3(b) is the
histogram of cycles from nets of 400 elements which used neither tautology
nor contradiction. The distribution is still strongly skewed toward short
cycle lengths, but the number of cycles of length one (equilibrial states) has
decreased. The mode here is 12, the median is 32, and the mean is 209.
Deletion of tautology and contradiction has increased the median cycle
length in nets of 400 elements from 8 to 32 states. The distribution of cycle
lengths is remarkable also in the preponderance of even numbered cycle
lengths.
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F1G. 3. (a) A histogram of the lengths of state cycles in nets of 400 binary elements which
used all 16 Boolean functions of two variables equiprobably. The distribution is skewed
toward short cycles. (b) A histogram of the lengths of state cycles in nets of 400 binary
elements which used neither tautology nor contradiction, but used the remaining 14
Boolean functions of 2 variables equiprobably. The distribution is skewed toward short
cycles.
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Because the distribution of cycle lengths is highly skewed, the median
cycle length seems the most representational length for nets of any size.
In Fig. 4, the log of the median cycle length is plotted against the log of the
size net, for nets with all 16 functions, and separately for nets without
tautology and contradiction. The values in each condition appear non-linear
in the log/log plot. The curves are initially steep, and flatten at larger values
of N. In nets with tautology and contradiction allowed, the asymptotic log
cycle length against log N is ~0-3. In nets with tautology and contradiction
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Fi1G. 4. Log median cycle length as a function of log &, in nets using all 16 Boolean
functions of two inputs (all Boolean functions used), and in nets disallowing these two func-
tions (tautology and contradiction not used). The asymptotic slopes are about 0-3 and 0-6.

disallowed, the asymptotic log cycle length ~0-6 log N. Disallowing
tautologies and contradictions appears to double the asymptotic slope in the
log/log plot. In this condition, the expected cycle length is just slightly
greater than the square root N (0-5 in the log/log plot). As N increases, the
median cycle length initially increases rapidly, then progressively slowly.
By projection, nets of 1,000,000 elements, with tautology and contradiction
disallowed, possess behavior cycles of about 1000 states in length—an extreme
localization of behavior among 21:209.000 possible states.

5.2. TRANSIENTS

For nets of a given size, the lengths of run-ins to cycles appears uncorrelated
with the length of the cycle to which the transient ran (Fig. 5). The longest
transients found were about the same length as the longest cycles found.
Like cycle length, the distribution of transient lengths is highly skewed
toward short lengths.
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F1G. 5. A scattergram of run-in length and cycle length in nets of 400 binary elements

using neither tautology nor contradiction. Run-in length appears uncorelated with cycle
length. A log/log plot was used merely to accommodate the data.

5.3. ACTIVITY

When the system is released from an arbitary initial state, the number of
elements which change value (the activity) per state transition decreases
rapidly. In nets of 100 elements, using all 16 Boolean functions, the number
of elements which change value at the first state transition is about 0-4N.
This decreases, along a curve nearly fitted by a negative exponential with a
half decay of 3-4 state transitions, to a minimum activity of 0 to 025N per
state transition along the cycle. For larger nets, the half decay should require
more transitions. Thus, as the system approaches a cycle, states become
progressively more similar. One would expect that all states which differ from
cycle states in the value of only one element would themselves be located a
very few state transitions from that cycle.

The number of genes which change value during a cycle varies between 0
and 35 in nets of 100 elements using all 16 Boolean functions. The consequence
is that most genes are constant throughout the cycle, and the cycle states are
highly similar.
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5.4. NUMBER OF CYCLES

The number of different state cycles—that is, the number of independent
and different modes of behavior in these nets—are as surprisingly small as
cycles are short.

By computer simulation, nets of 15, 50, 64, 100, 191 and 400 elements were
studied. For each net, the system was placed successively in 50 arbitrarily
chosen initial states, and the cycle discovered from each initial state was
compared with previously discovered state cycles of that net. The median
number of cycles per net is low; the distribution of the number of cycles per
net around the median is skewed toward few cycles. In Fig. 6 is a histogram
of the number of cycles per net, where N = 400, and neither tautology nor
contradiction was allowed. The median number of cycles per net was 10.
Presence or absence of tautology and contradiction does not seem to affect
the number of cycles per net.
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FiG. 6. A histogram of the number of cycles per net in nets of 400 elements using neither

tautology nor contradiction, but the remaining Boolean functions of two inputs equiprobably.
The median is 10 cycles per net. The distribution is skewed toward few cycles.

The log of the median number of cycles per net is plotted against log N
in Fig. 7. The data appears to fall on a straight line with a slope of 0-5. Log
number of cycles ~0-5 log N. The expected number of modes of behavior is
about \/ N/2. The number of cycles initially rises rapidly, then progressively
slowly. By projection, nets of 1000 elements will have about 16 cycles, and nets
of 1,000,000 about 500 modes of behavior.

Since only 50 run-ins to each net were made, the data probably under-
estimates the number of cycles per net. However, 200 run-ins per net rarely
revealed more than 109, more cycles than had the first 50 run-ins of the 200;
the data in Fig. 7, therefore, seems a good guide for the comparison of the
number of cycles per net among nets of different sizes.
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Fic. 7. The median number of cycles per net as N increases appears linear in a log/log
plot. The slope is about 0-5. The expected number of cycles is slightly less than square root N.

5.5. DISTANCE BETWEEN CYCLES

The minimum possible difference between states on two distinct cycles is 1
—a difference in the value of a single element. This distance occurs frequently
but the minimum distance may be as large as 0-3N. Figure 8 is a scattergram
of minimum distances between cycles correlated with the length of the cycles
in many nets of 100 elements using all 16 Boolean functions. The median
minimum distance between cycles is 5. The average distance between cycles
is about 10. When a net embodies many cycles, these frequently form sets
within which each cycle is a minimum distance of one from one or two
members of the set. Between sets, the distance is larger and may be as great
as 0:3N.

5.6. NOISE PERTURBATIONS

The effect of state noise on the behavior of K = 2 random nets has been
studied by perturbing the system as it traverses a cycle by arbitrarily reversing
the value of a single gene for a single time moment. The perturbed net may
either return to the behavior cycle from which it was dislodged, or run in to
a different cycle. The program first built a net, then explored it from 50
randomly chosen initial states, and stored the different state cycles discovered.
Then all states which differed by the value of one gene from each state of the
first cycle discovered were tried, and the cycle to which each of these states
ran was stored. From this, a row listing the number of times perturbation
by one unit of noise shifted the system from the first behavior cycle to each of
the cycles was compiled. The procedure was repeated for all remaining
cycles, generating a square matrix listing of the transitions between cycles
induced by all possible single units of noise. Division of the number in each
cell of the matrix by the row total results in a matrix of transition probabilities
under the drive of random (1 unit) noise, which is a Markov chain (see Fig. 10).
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Fic. 8. A scattergram of the minimum distance between cycles and cycle length in nets of
100 elements using all 16 Boolean functions of two variables. Minimum distance between
cycles appears uncorrelated with cycle length, The median minimum distance is 0-05N.

Such chains are characterized by ergodic sets of states, transient states and
absorbing states. If each behavior cycle in a binary net is considered a state
of a Markov chain, then an ergodic set of cycles is defined to be a set in which
each cycle can reach all members of the set by some path through them, but
cannot reach a cycle outside the set. A transient cycle lies outside any ergodic
set. Once the system reaches an ergodic region, it cannot return to the
transient cycle. An absorbing cycle is an ergodic set consisting of a single
cycle which always returns to itself after perturbation. Markov chains may,
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F1G6. 9. (a) The total number of cycles reached from each cycle after it was perturbed in
all possible ways by one unit of noise correlated with the number of cycles in the net being
perturbed. The data is from nets using neither tautology nor contradiction, with N = 191,
and 400. (b) The number of cycles reached from each cycle with a probability greater than
0-01 in the same nets as those of (a). In nets using all 16 Boolean functions, the total number
of cycles reached from each cycle is about the same as the data in (b).

of course, have more than one ergodic region; each or all may be accessible
from a single or several transient cycles.

Perturbation has been studied in nets ranging from 15 to 2000 elements.
Nets larger than 400 elements used all 16 Boolean functions. In those of less
than 400, both conditions—with and without tautology and contradiction—
were simulated. In general, the net returns to the cycle perturbed with

5 10 15 20 25 30 35 40 45 50 55 60

65
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probabilities between 0-85 and 0-95. Behavior in randomly connected binary
nets is highly stable to infrequent noise.

One might have supposed that infrequent noise could induce a shift {rom
each cycle to all others. This proves untrue. Transitions from a cycle arc
highly restricted ; each cycle generally can shift to only one to six other cycles
with probabilities of 0-01 to 0-05, and to a few others with probabilities between
0-01 to 0-0001. Most cycles cannot be directly reached from any single cycle
[see Figs 9(a) and 9(b)].

Despite the restricted transition possibilities from each cycle in many
instances, the entire cycle set forms one ergodic region. Equally frequently,
a subset of the cycles forms one ergodic region, and the remaining cycles
are transient cycles leading into the ergodic region, but not reachable from it.
In the latter case, under infrequent noise, the system may progressively
restrict the locale of its activity to the ergodic subset of cycles.

In no case when all possible single units of state noise were explored has
more than one ergodic region been found. Restriction of perturbation to the
first 0-6¥ of the N genes, however, has on one occasion yielded two ergodic
regions. Further restriction of perturbation to 0-05N renders multiple ergodic
sets probable.

One of the nets studied is presented in Fig. 10. The set of cycles form
a single ergodic region, with transients leading into it. One would expect
that in systems with several hundred cycles, more than a single ergodic region
would be found.

5.7. K = 3 NETS

The occurrence of short cycle lengths and few cycles in random nets seems
not to depend narrowly on an interconnection of two inputs per gene.
I have simulated nets of 15, 20, 25 and 50 elements, each receiving three
inputs from other elements, and allowed use of all 22° = 256 Boolean func-
tions of three variables. Cycles were slightly longer, the number of cycles
about the same as comparable nets of connectivity two. These characteristic
behaviors of random nets seem to require only low connectivity to occur.
The rate of their failure as K approaches N will require careful delineation.

6. Discussion

It is surprising that randomly constructed nets, in which each element is
directly affected by two others, embody short, stable behavior cycles. The
immense restriction of behavior in a K = 2 net of 1000 elements, limited to
cycles a few hundred states in length, can only be appreciated in contrast to
an expected state cycle length of 10*%° in a totally connected (K = N) net of
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Fi1G. 10. (a) A matrix listing the 30 cycles of one net and the total number of times one unit
of perturbation shifted the net from each cycle to each cycle. The system generally returns
to the cycle perturbed. Division of the value in each cell of the matrix by the total of its
row yields the matrix of transition probabilities between modes of behavior which con-
stitute a Markov chain. The transition probabilities between cycles may be asymmetric.
(b) Transitions between cycles in the net shown in (a). The solid arrows are the most probable
transition to a cycle other than the cycle perturbed, the dotted arrows are the second most
probable. The remaining transitions are not shown. Cycles 2, 7, 5 and 15 form an ergodic
set into which the remaining cycles flow. If all the transitions between cycles are included,
the ergodic set of cycles becomes: 1, 2, 3, 5, 6, 12, 13, 15, 16. The remainder are transient
cycles leading into this single ergodic set. '
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the same size. 10"°® assumes its appropriate proportion when one remembers

that 102* estimates the age of the universe in microseconds.

Schrodinger (1944) noted that high molecular specificity, guaranteed by
quantum stabilization, is required for the precision of biosynthesis in living
things. The behavior of these randomly connected nets discloses an un-
suspected, and, I believe, fundamental corollary to that precision. A molecular
reaction net of high specificity is a net of low connectivity. High specificity
appears necessary both for precision of product formation, and to yield a
system whose global chemical oscillatory behavior is brief and stable.

The hypothesis that living genetic nets are randomly assembled does not
imply that one gene of these nets lacks a specific effect on a second. It asserts
that if the “wiring diagram” of the specific repression and derepression
connections between genes were known, it would be topologically in-
distinguishable from a “wiring diagram” generated by random assignment of
specific interactions between genes. The hypothesis is consistent with both
the random modifications of protein structure induced by mutation, and
the lack of steric similarity between the molecule mediating end-product
inhibition of an enzyme, and the substrate of that enzyme.

Biologically reasonable behavior in random nets occurs only if each element
is directly affected by about the same low number of other elements as are
macromolecules in living things. This correspondence lends support to the
hypothesis that living metabolic nets are randomly constructed.

7. Cell Cycle Time

Among the most characteristic cyclic phenomena in cells is their replication.
Van’t Hof & Sparrow (1963) have studied the minimum division cycle time
in cells of several species of higher plants. In their Fig. 3 [reproduced as
Fig. 11(a)] they show the minimum cell replication time as a function of the
DNA content per cell nucleus in six species of plants. The data fall nearly
on a straight line. The authors conclude that, in higher organisms, minimum
cell replication time is a linear function of the DNA content per nucleus
[see Fig. 11(a)].

Projection of this linear function predicts that cells without DNA will
require several hours to replicate; bacteria with little DNA per cell require
about 30 min to replicate. A curve of replication time from organisms with
little DNA per cell to higher organisms must start near the origin, rise
rapidly as the amount of DNA per cell increases, then rise more slowly as
the DNA per cell continues to increase. Van’t Hof & Sparrow (1963) suggest
the assumption of a second mechanism to control the time required for
cell replication which would provide a steep linear slope from the origin, and
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Fic. 11. (a) Van’t Hof & Sparrow’s (1963) Fig. 3 showing minimum cell replication time
as a function of the DNA per nucleus for several plant species. (b) Projected cycle time in
nets of 2 to 40 million binary genes using all 16 Boolean functions of two input variables,
compared to Van’t Hof and Sparrow’s plot. In the range where Van’t Hof and Sparrow
report a linear relation, the binary net model predicts values which are nearly linear.
Reduction in the number of elements assigned tautology or contradiction should raise
expected cycle lengths and shift the nearly linear slope of the theoretical data to correspond
closely with Van’t Hof and Sparrow’s data.
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intersect their observed linear function among higher plants. Choice of
control mechanism would depend upon the nuclear content of DNA.

I wish to show that a single principle, the hypothesis that living things are
typical randomly interconnected reaction nets, is able to predict cell replica-
tion time as a function of the number of genes per cell throughout a wide
range of phyla.

Estimates of the time required to switch a gene on or off lie between 5 and
90 seconds (Goodwin, 1963). 1 will assume that about one minute suffices for
a state transition in a real genetic net. Thus, if the model predicts a state cycle
length of 100, the biochemical realization of the model should require about
100 minutes to traverse its cycle of oscillatory chemical concentrations.

In Fig. 12 I have plotted the logarithm of cell replication time in minutes
against the logarithm of the estimated number of genes in that cell, for
several species. The data include bacteria, protozoa, yeast, Aspergillus, sea
urchin, chicken, mouse, rat, man, rabbit, dog, frog (and minimum cell
replication time for) Vicia faba, and several other plants (sec Table 1). The

TABLE 1
Data for Fig. 12

Organism DNA per cell Cell replication time
Bacteria Watson (1965) Altman & Dittmer (1962)
Protozoa Nanney & Rudzinska (1960) Altman & Dittmer (1962)
Sea urchin Sparrow & Evans (1961) Mazia (1961)

Chicken Vendrely (1955) Cleaver (1967)
Mouse Vendrely (1955) Cleaver (1967)
Rat Vendrely (1955) Cleaver (1967)
Man Vendrely (1955) Cleaver (1967)
Rabbit Vendrely (1955) Cleaver (1967)
Dog Vendrely (1955) Cleaver (1967)
Frog Vendrely (1955) Cleaver (1967)
Vicia faba Van't Hof & Sparrow (1963) Van’t Hof & Sparrow (1963)

Pisum sativum

Tradescantia paludosa
Tulipa kaufmanniana
Helianthus annuus

Trillium erectum

Van’t Hof & Sparrow (1963)
Van’t Hof & Sparrow (1963)
Van't Hof & Sparrow (1963)
Van’t Hof & Sparrow (1963)
Van’t Hof & Sparrow (1963)

Van’t Hof & Sparrow (1963)
Van't Hof & Sparrow (1963)
Van’t Hof & Sparrow (1963)
Van't Hof & Sparrow (1963)
Van’t Hof & Sparrow (1962)

Aspergillus nidulans
Saccharomyces
cervesiae

Horowitz & Metzenberg (1965) Rosenberger & Kessel (1967)

Horowitz & Metzenberg (1965) Williamson (1964)

number of genes per cell was estimated by comparison of its DNA per cell
with that of Escherichia coli, which Watson (1965) has estimated to have
about 2000 genes. Based on these procedures, human cells embody about
2,000,000 genes.
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The median cellular replication time for bacteria, protozoat, chicken.
mouse, and man are also shown in Fig. 12. It is apparent that these median
replication times fall very nearly on a straight line whose slope on a log/log
plot is 0-5. The expected replication time in minutes is therefore about the
square root of the estimated number of genes. The square root of N increases
rapidly initially, then more slowly.

The behavior of randomly interconnected reaction nets predicts this
observed relation between DNA content and replication time. The length of
state cycles in random nets increases at almost the same rate as a function of
the number of elements, as do cell cycle times as the number of genes increases.
Based on the assumption that a state transition requires about one minute,
the model, without tautology and contradiction, predicts a cycle time of
about 50 minutes in a net of 2000 elements, and 16 hoursin a net of 1,000,000.
The rate of increase of cycle lengths in nets with and without tautology and
contradiction are shown superimposed on the biologic data of Fig. 12. Cell
replication time falls between the two. In nets using neither tautology nor
contradiction, the asymptotic slope of the logarithm of the cycle length is
about 06 log N; using all 16 Boolean functions the asymptotic slope is
0-3. Decreasing the estimate of the time required for a state transition in a real
genetic net from one minute to 0-5 minute, brings the theoretical curve for nets
without tautology or contradiction into close agreement with the observed
slope of log median cell replication times against log number of genes,

In the range of DNA per cell where Van’t Hof & Sparrow (1963) describe
a linear relation between the DNA content per cell and minimum replication
time, the relation between net size and cycle length in nets using all 16
Boolean functions is very nearly linear. The two slopes are of the same order
of magnitude [see Fig. 11(b)]. Reduction in the number of elements assigned
tautology or contradiction should bring the theoretical slope close to the
observed.

The model also appears to predict the distribution of replication times
in cells with the same number of genes. Bacteria, with about the same
number of genes—2000—concentrate their replication times between 12 and
100 minutes, and scatter them up to 2000 rarely. Random nets of 1000

1 Bacteria were assumed to have about the same DNA per cell content and to code for
about 2000 genes. In protozoa, the number of genes per cell is difficult to estimate due to
the macronucleus. I have treated all protozoa as having about the same number of genes
per cell, and estimated this number by dividing the cellular DNA content in Tetrahymena
by the ratio of macronucleus DNA to micronucleus DNA in Paramecium.

I assume the DNA per cell in Aspergillus nidulans is about equal to that in Neurospora
crassa. Rosenberger & Kessel (1967) chose growth media to yield disparate replication
times in Aspergillus (1-4, 1-8, 3-7, 4+7, 7-0, 9-0 hr). I assume the first three represent relatively
normal values.
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elements, using neither tautology nor contradiction, concentrate their state
cycle lengths between 10 and 100 states, and scatter them up to 2000 to 10,000
rarely. In Fig. 12 are several state cycle lengths in nets of 1000 elements.
The distribution is similar to that for bacterial replication times. Both
distributions are skewed toward short cycle lengths in a linear plot. A more
rigorous test of their similarity lies in the fact that both remain skewed
toward short cycles in a logarithmic plot, as shown in Fig. 12.

The single hypothesis that living things behave as typical randomly
connected switching nets appears to predict moderately well both the rate of
increase in the median replication time as the DNA content of cells increases,
and also the distribution about that median of replication time.

Is this correspondence coincidental? Replication of the DNA in higher
organisms is known to be initiated at many independent sites. Initiation of
replication along any small segment of a chromosome is thought to require
the activity of a “replicon”, and protein synthesis (Mazia, 1961). If these
replicons form elements in the total metabolic net of the cell, depending for
their own initiation upon the previous synthesis of other materials, it would
not be unduly surprising hat the periodicity of their activity, the S period,
is bound by the periodicity of the entire metabolic net.

Viewing the periodicity of the cell cycle as an expression of state cyclesin a
randomly connected net may account for the lack of effect upon cell replica-
tion time of increasing polyploidy (Van’t Hof, 1965). Increasing the number
of copies of each gene shifts the expression (of the set of copies) of a gene
from a binary variable, when there is only one copy, towards a continuous
variable, without altering the connections between or function assigned the
genes. The set of copies of a gene would now be capable of a graded output
depending upon how many product molecules of its input genes were present.
Several arguments (Walter, Parker & Yeas, 1967) suggest that if each element
(here element = the set of copies of a gene) in a net realizes a cotinuous,
appropriately nonlinear function (e.g. sigmoid) of its inputs, then the net
behaves as though it were comprised of binary devices. In this circumstance,
cycle lengths should not be greatly changed by increasing polyploidy.

Unorderly nets in which each component directly affects very few others
appear to behave with stability as great as that in living things. States on a
cycle are similar to each other; only about 159 of the elements change value
during a cycle. The remainder emit a constant output. Even more surprising
is the stability shown by random nets to random, one unit noise. In these
computer simulations a net was often perturbed from any behavior cycle
4000 times or more. Systems perturbed from a cycle return to that cycle
with probabilities of about 90%,. While there is little data on the stability of
a cell’s metabolic behavior to infrequent noise, the behavior of random nets
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seems to demonstrate sufficient stability to qualify as a model of cellular
stability in the face of biochemical noise.

8. Cellular Differentiation

The principles underlying cellular differentiation remain among the most
enigmatic in biology. We are required to explain the spontaneous generation
of a multiplicity of cell types from the single zygote, to deduce a natural
tendency of a system to become increasingly heterogeneous, then to stop
differentiating.

Among the important characteristics of cell differentiation are: initiation
of change; stabilization of change after cessation of stimulus; the efficacy of
many substances, exogenous and endogenous, as inductive stimuli; a limit
of five or six as the number of cell types which may differentiate directly from
any cell type; progressive limitation in the number of developmental path-
ways open to any small region of the embryo; restricted periods during which
a cell is competent to respond to an inductive stimulus; the discreteness of
cell types, that is, the mutually exclusive constellations of properties by
which cells differ; a requirement for a minimal and preferably heterogeneous
cell mass to initiate differentiation in many instances, and to maintain it in
some; the occurrence of metaplasia between undifferentiated cell types, or
from an undifferentiated type to a specialized type, but the lack of metaplasia
(the isolation) between specialized cell types; and the cessation of differentia-
tion (Grobstein, 1959).

I believe many aspects of differeatiation to be deducible from the typical
behavior of randomly built genetic nets.

Cells are thought to differ due to differential expression of, rather than
structural loss of, the genes. Differential activity of the genes raises at least
two questions which are not always carefully distinguished: the capacity of
the genome to behave in more than one mode; and mechanisms which insure
the appropriate assignment of these modes to the proper cells. The second
presumes the first.

Randomly assembled nets of binary elements behave in a multiplicity of
distinct modes. Different state cycles embodied in a net are isolated from
each other, for no state may be on two cycles. Thus, a multiplicity of state
cycles, each a different temporal sequence of genetic activity, is to be expected
in randomly constructed genetic nets. It seems reasonable to identify one cell
type with one state cycle. To the extent that this binary model, in which the
expression of the “gene” is potentially reversible at each clocked moment, is
accurate, it demonstrates the common occurrence of multiple modes of
behavior in a genetic system.

If this identification is reasonable, the typical number of cycles in a random
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“genetic” net must be of the same order of magnitude as the number of cell
types in organisms with the same number of genes.

Estimates of the number of cell types in an organism are hazardous, but
the number in man may be placed at about 100; in annelid worms, at 57; in
jellyfish, between 20 and 30; in hydra, between 11 and 17; in sponges, about
12-14; in Neurospora crassa, 5; in algae, 5; and in bacteria, 2, vegetative and
spore (see Table 2). The logarithm of the values are plotted against the

TABLE 2
Data for Fig. 13

Organism DNA per cell Number of cell types
Man Vendrely (1955) Grobstein (1959)
Sponge Sparrow & Evans (1961) Estimated from

Borradaile, Potts,

Eastham & Saunders (1958)
Jellyfish Sparrow & Evans (1961) Estimated from

Borradaile, Potts,

Eastham & Saunders (1958)
Cenadidia Mirsky & Osawa (1961) Estimated from

Borradaile, Potts,

Eastham & Saunders (1958)
Neurospora crassa Horowitz & Metzenberg (1965) Baldwin & Rusch (1965)
Saccharomyces

cervesiae Horowitz & Metzenberg (1965) Baldwin & Rusch (1965)
Algae Horowitz & Metzenberg (1965) Baldwin & Rusch (1965)
Hydrat ? Macklin (1968)

Bacteria Watson (1965) Macklin (1968)

+t The DNA per cell in hydra presumably lies between sponge and jellyfish.

logarithm of the estimated number of genes per cell in each organism, in
Fig. 13. A straight line has been drawn through these values; its slope is 0-5.
The logarithm of the number of independent cycles in a random net is also
about 0-5 logarithm of the number of genes. By projection of the data
established in Fig. 7, nets with about 16,000 genes (comparable to the sponges)
should have about 120 cell types, and man, with an assumed 2,000,000 genes,
about 700 cell types. These theoretical predictions are also plotted in Fig. 13.
The rate of increase in the number of cycles in random nets as N increases
appears almost identical to the rate of increase in the number of cell types of
an organism as the number of genes increases. The theoretical curve is shifted
to the left, however, and predicts more cell types than are actually counted.
T.B. 30
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estimated number of genes per cell, and the logarithm of the median number of state cycles
is plotted against logarithm N. The observed and theoretical slopes are about 0-5. Scale:
2 x10° genes per cell = 6x10-*2g DNA per cell.

The predictions remain well within an order of magnitude of the biologic
data.

Caution is required for several reasons: large nets have not been simulated ;
these nets use binary elements, nets of greater verisimilitude must be studied;
estimates of the number of cell types in an organism, or the number of genes
in that organism are only approximate.

The biologic data need not fall on a straight line in order to remain com-
patible with this model. Account must be taken of the distribution of the
number of cycles found in nets of any given size. The distribution of the
number of cycles per net is skewed toward few cycles, as shown in Fig,. 6.

With these reservations, I think it fair to say that the correspondence
between the predicted number of independent modes of behavior in randomly
interconnected nets and the observed number of cell types in organisms is
good.

Cells differ from one another in the possession of a constellation of
properties which do not intergrade. Similarly, cycles in random nets may be
compared for the minimum dissimilarity between their states. In nets of
100 elements, the minimum distance between cycles is commonly 0-05N to
0-25N. Like cell types, behavior cycles are generally separated from one
another by a constellation of properties. Since no state may lead to two states,
hence be on two cycles, state cycles, like cell types, are mutually exclusive.
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If the multiplicity of modes of behavior in a random net helps elucidate the
capacity of the genome to behave in more than one way, the appropriate
segregation of these modes of behavior to the correct cells requires explan-
tion. Biochemical noise may play a very large role in directing that segregation.
A theory which assigns to biochemical noise the task of segregation of
different modes of genetic behavior to different cells offers great advantages.
Biochemical noise is ubiquitous, unavoidable, and therefore reliable. It
remains to show that biochemical noise in a randomly cross coupled genetic
net can produce orderly sequential segregation of behavior modes to the
appropriate cells.

Perturbation of nets, behaving on cycles, by one unit of noise generally
had only a transient effect on the systems behavior. With a probability of
about 0-9, the system returned to the cycle perturbed. Of the remaining 0-1V
noisy inputs, these caused the system to shift from any cycle to at most one to
six other cycles with probabilities greater than 0-01, and a few more with
probabilities below 0-01. It is therefore of considerable interest that, through-
out phylogeny, no cell differentiates directly into more than a few other cell
types. Restriction in the possible transitions between modes of behavior
appears to be characteristic of both random nets and cell types.

The spontaneous generation of a multiplicity of cell types from a single
cell type follows explicitly from this model. The occurrence of infrequent
noise induces on the cycles of a randomly constructed net the transition
probabilities between them which form a Markov chain. Such a chain must
have at least one ergodic region—a set of cycles each of which can reach all
cycles of that set, but no other cycles. It may have transient cycles lying out-
side the single ergodic set, reaching into, but not reachable, from that set,
It also may have more than a single ergodic set; each ergodic set must be
isolated from all other ergodic sets, however, all may be reachable from some
single transient either directly, or via other transients.

Let the net embody only a single ergodic set of cycles. If placed on any
cycle in the set and perturbed by noise, the system will ““spontaneously” pass
from cycle to cycle along the allowed transition pathways. An isolated cell
would appear to oscillate among its modes of behavior, driven by external
noise. If the net is a replicating cell, the clone will explore the permitted
transition pathways between cycles and populate the ergodic set according to
the asymptotic transition probabilities between the cycles. Cells will spon-
taneously start to change, pass down restricted pathways of development,
populate the complete set of possible modes of behavior, and settle to some
stable distribution. Since the net, by hypothesis, embodies only a single
ergodic set, each cycle may reach all; differentiation of any cell cannot be
stable, a cell of one type should occasionally “spontaneously” change to
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become a cell of a different type. Since all types may be reached trom any
type, deletion of a subset of cell types should create a net movement of cells
into the type of cells removed—regeneration should occur.

Stable, irreversible differentiation would require either location in a
microenvironment in which the “noise” was sharply biased by the neighboring
cell types, or, more fundamentally, a muitiplicity of ergodic regions.

Assume a net with more than a single ergodic set. (I have not yet found
such a net.) Let there be a transient which reaches, via other transients, into
all ergodic sets. Call this transient cycle the zygote. Let it replicate. Then,
the zygote is totipotent with respect to all its ergodic regions. We may
explain the initiation of differentiation; the zygote is on a Markovian transient
cycle in a noisy environment and must eventually leave. We may explain the
cessation of differentiation; the system enters an ergodic set and becomes
trapped. We have deduced the apparently spontaneous generation of hetero-
geniety. As the system passes, goaded by noise, from the zygote toward some
ergodic set, it must pass branch points to other ergodic sets. Before reaching
such a branch point, no noise will move it to that ergodic set; while passing,
noise will so move it; after passing, the system will not be competent to
respond to noise and reach that ergodic set. Hence we expect the competence
of limited duration, the efficacy and reliability of noise as the stimulus for
induction, the aid to differentiation provided by contact with heterogeneous
tissue as a source of noise; stabilization of change after its induction and the
branch point is passed; progressive restriction of developmental pathways as
branch points to ergodic sets are passed; limitation in the number of cell
types which may arise directly from any cell type; difficulty of metaplastic
transformation between specialized cells (in different ergodic sets), and the
possibility of metaplastic transformation between undifferentiated (transient)
and specialized cell types. Let the net replicate during this perturbation and
a particular number will pass down each transition from each cycle, reach
each ergodic set, occupy all allowable cycles and distribute themselves accord-
ing to the asymptotic transition probabilities between cycles and replication
rates of each cell type. Grant death to some, and a steady-state population of
various cell types arises. Because cells are trapped in separate ergodic regions,
overall regeneration is not possible. Within each region, restricted regeneration
remains possible. Wounds heal.

Earlier, I alluded to the argument (Walter e? al., 1967) that a set of elements
whose outputs are sigmoid functions of their inputs behave as a set of binary
devices. If true, this suggests that the results obtained for binary nets, rather
than being highly simplified approximations, may approach closely to an
accurate solution of the behavior of randomly interconnected, biologically
appropriate nonlinear, metabolic nets.



RANDOM GENETIC NETS 465

Study of the typical behavior of randomly-assembled determinate nets has
barely begun. Further research is now needed to extend these results to larger
nets; to study the effect of different numbers of inputs per element;; to establish
firmly the behavior of nets whose elements realize biologicaily appropriate
continuous or probabilistic functions on their inputs; to find the effect of
increasing levels of state noise, and more particularly, of “biased” noise due
to spatial proximity with other copies of the net behaving on different cycles,
and to study the effect of mutation-random alteration in the structure of the
net, on its behavior.

While the model has been developed to study cellular control processes,
it is formally identical to nerve net models and may find application in other
branches of science.

9. Conclusion

A living thing is a richly interconnected net of chemical reactions. One
can little doubt that the earliest proto-organisms aggregated their reaction nets
at random in the primeval seas; or that mutation continues to modify living
metabolic nets in random ways. Evolution, therefore, probably had as its
initial substrate the behavior of randomly aggregated reaction nets.

It is a fundamental question whether two billion years of survival pressure
have succeeded in selecting from a myriad of unorderly reaction nets those
few improbable, that is non-random and ordered, metabolic nets which alone
behave with the stability requisite for life; or whether living things are akin
to randomly constructed automata whose characteristic behavior reflects
their unorderly construction no matter how evolution selected the surviving
forms.

The data I have presented suggest: that large, randomly interconnected
feedback nets of binary “genes” behave with the stability requisite for life;
that they undergo short stable cycles in the states of their constituents;
that the time required for these behavior cycles parallels and predicts the time
required for cell replication in many phyla; that the number of distinguishable
modes of behavior of a randomly constructed net predicts with considerable
accuracy the number of cell types in an organism which embodies a genetic
net of the same size; that, like cells, a random net is capable of differentiating
directly from any one mode of behavior to at most a few of its other modes;
and that these restricted transition possibilities between modes of behavior
allow us to state a theory of differentiation which deduce the origin, sequence,
branching, and cessation of differentiation as the expected behavior of
randomly assembled reaction nets.

If original proto-organisms built their reaction nets randomly, it behoves
the biologist to build an adequate theory of the behavior of these systems;
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such a theory should elucidate the problems of biosynthetic organization
faced by early living forms. But, if extant biota are also randomly constructed,
then an adequate theory of the behavior of randomly assembled reaction nets
would constitute an appropriate theory in which to describe the metabolic
behavior of nets throughout phylogeny. The correspondence between the
behavior of randomly interconnected nets of binary ““genes’ and the range of
biologic data described above, suggest that organisms may indeed form a
single population of typical randomly constructed reaction nets. Only if
living things do form a single population does a general theory of metabolic
behavior seem a reasonable goal for theoretical biology. The consequence of
such a theory would be our ability to deduce, not merely describe, metabolic
behavior from general propositions about the behavior of any randomly
constructed feedback net; and to do so about genetic nets whose exact
construction we do not, and may never, know.

Large, randomly assembled nets of binary elements behave with simplicity,
stability, and order. It seems unlikely that Nature has made no use of such
probable and reliable systems, both to initiate evolution and protect its

progeny.
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