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Although real-world complex systems typically interact through sparse and heterogeneous networks,
analytic solutions of their dynamics are limited to models with all-to-all interactions. Here, we solve the
dynamics of a broad range of nonlinear models of complex systems on sparse directed networks with a
random structure. By generalizing dynamical mean-field theory to sparse systems, we derive an exact
equation for the path probability describing the effective dynamics of a single degree of freedom.
Our general solution applies to key models in the study of neural networks, ecosystems, epidemic
spreading, and synchronization. Using the population dynamics algorithm, we solve the path-
probability equation to determine the phase diagram of a seminal neural network model in the sparse
regime, showing that this model undergoes a transition from a fixed-point phase to chaos as a function
of the network topology.
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Introduction—Complex dynamical systems are modeled
by N degrees of freedom xiðtÞ (i ¼ 1;…; N) that evolve in
time according to the differential equation

ẋiðtÞ ¼ −fðxiÞ þ
XN
j¼1

Aijgðxi; xjÞ; ð1Þ

where fAijgi;j¼1;…;N defines the interaction network. The
function fðxÞ governs the dynamics in the absence of
interactions, and the kernel gðx; x0Þ shapes the pairwise
couplings. Equation (1) models the nonequilibrium
dynamics of neural networks [1–5] and ecosystems
[6–8], epidemic spreading [9–12], synchronization phe-
nomena [13–15], opinion dynamics [16,17], and multi-
variate Ornstein-Uhlenbeck processes [18–20]. Table I
specifies fðxÞ and gðx; x0Þ for paradigmatic models of
complex behavior.
The foremost problem in the study of complex systems

is how to reduce the dynamics of many interacting
elements to the dynamics of a few variables [23].
Dynamical mean-field theory (DMFT) [24–26] is a
powerful method to tackle this problem in the limit
N → ∞, yielding a solution in terms of the path prob-
ability for the effective dynamics of a single degree of
freedom. The application of DMFT to models described
by Eq. (1) has been attracting an enormous interest
[2–5,7,8,15,19,20,27–34], especially in the context of
neural networks and ecosystems. Phase diagrams of these
models reveal a rich phenomenology, including different
types of phase transitions [5,7,30], chaotic behavior [1,3],
and coexistence of multiple attractors [7,8,35]. Despite
this substantial theoretical progress, DMFT is currently
limited to dense networks, where each dynamical variable

is essentially coupled to all others by means of Gaussian
interaction strengths. However, the interactions in real-
world complex systems are known to be sparse and
heterogeneous [36,37]. Sparseness indicates that each
element of the system interacts on average with a finite
number of others, while heterogeneity refers to fluctua-
tions in the local topology of the interaction network.
How to integrate these more realistic features in the
formalism of DMFT for systems modeled by Eq. (1)
remains an unresolved challenge, and even basic ques-
tions, such as deriving the phase diagram of sparse
complex systems, are still out of reach.
On the other hand, the dynamics of complex systems on

sparse networks has been extensively studied in the case
of Ising spins [38–50]. In this context, both the cavity
method [39] and DMFT [38,40] provide an analytic
solution in terms of the path probability for the effective
dynamics of a single dynamical variable. However, the
presence of bidirected edges induces a temporal feedback,
which, in the particular case of sparse systems, leads

TABLE I. Explicit form of fðxÞ and gðx; x0Þ in complex systems
modeled by Eq. (1). Equation (1) for the SIS model is derived
through the quenched mean-field approximation [12,21,22].

Model fðxÞ gðx; x0Þ
Ornstein-Uhlenbeck process [18] x x0

SIS model of epidemic spreading [9] x ð1 − xÞx0
Lotka-Volterra (LV) model [7,8] xðx − 1Þ xx0

Neural network (NN) model [1,4] x tanhðx0Þ
Kuramoto model [14] 0 sinðx0 − xÞ
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to an exponential growth of the path-probability dimen-
sion [38,40,49], rendering numerical computations unfea-
sible. Approximation schemes, such as the one-time
approximation [39], make these computations possible
[42,43,48]. When the interactions are directed or unidi-
rectional, there is no temporal feedback and the path-
probability equation can be efficiently solved [38,39,51].
Inspired by these results for Ising spins, in this Letter

we solve the dynamics of models governed by Eq. (1) on
sparse directed networks with an heterogeneous topology.
The solution represents a foundational step in the study of
complex systems, as it ultimately incorporates the sparse
and heterogeneous structure of complex networks into
the formalism of DMFT. Directed networks are interest-
ing because they model the nonreciprocal interactions in
real-world complex systems [52], including the human
cortex [53], food webs [37,54,55], gene regulatory
networks [56,57], online social networks [58,59], and
the World Wide Web [60]. The formalism presented
here thus opens the possibility to analytically investigate
how realistic interactions impact the dynamics of com-
plex systems.
By generalizing DMFT to sparse systems, we obtain an

exact equation for the path probability describing the
effective dynamics of a single variable for N → ∞, and
we solve this equation for different models in Table I by
using the population dynamics algorithm [61–66]. The
excellent agreement between our theoretical results and
numerical simulations of finite systems confirms that our
solution applies to various nonlinear models interacting
through different network topologies, including networks
with power-law degree distributions [36].
As an application, we determine the phase diagram of the

neural network model by Sompolinsky et al. [1] in the
sparse regime. We show that the phase diagram displays
trivial and nontrivial fixed-point phases, a chaotic phase
with zero mean activity, and a chaotic phase with nonzero
mean activity [30]. By calculating certain macroscopic
observables, we determine the transition lines as functions
of the mean degree and the variance of the coupling
strengths, showing their consistency with the universal
critical lines derived from random matrix theory [67–69].
In particular, we provide numerical evidence that the
transition between the chaotic phases coincides with the
vanishing of the gap between the leading and the sublead-
ing eigenvalue of the interaction matrix.
Sparse directed networks—Let Aij ¼ CijJij be the ele-

ments of the N × N interaction matrix A. The binary
variables Cij ∈ f0; 1g determine the network topology,
while Jij ∈R controls the interaction strengths. If Cij ¼ 1,
there is a directed edge j → i pointing from node j to i,
while Cij ¼ 0 otherwise. The indegree Ki ¼

P
N
j¼1 Cij and

the outdegree Li ¼
P

N
j¼1 Cji count the number of links

entering and leaving node i [36], respectively. The random
variables fCijgi≠j follow the distribution

PðfCijgÞ ¼
1

N

YN
i≠j¼1

�
c
N
δCij;1 þ

�
1 −

c
N

�
δCij;0

�

×
YN
i¼1

δKi;
P

N
j¼1

Cij
δLi;

P
N
j¼1

Cji
; ð2Þ

where N is the normalization constant and Cii ¼ 0. The
degrees fKi; Ligi¼1;…;N are independent and identically
distributed random variables drawn from pk;l ¼pin;kpout;l,
where pin;k and pout;l are the indegree and the outdegree
distribution [36,64], respectively. The parameter c is the
average degree

c ¼
X∞
k¼0

kpin;k ¼
X∞
l¼0

lpout;l: ð3Þ

Equation (2) defines a network ensemble where directed
links are randomly placed between pairs of nodes with
probability c=N, subject to the prescribed degree sequences
generated from pk;l. In the limit N → ∞, network samples
generated from Eq. (2) are similar to those produced by the
configuration model [70,71]. The coupling strengths
fJijgi;j¼1;…;N are independent and identically distributed
random variables drawn from a distribution pJ with mean
μJ and variance σ2J. The distributions pk;l and pJ fully
specify the network ensemble, allowing for a systematic
investigation of how network heterogeneities impact the
dynamics of complex systems.
Solution through DMFT—We solve the coupled dynam-

ics of Eq. (1) on directed networks by using dynamical
mean-field theory (DMFT) [24–26]. We consider the sparse
regime, where the mean degree c is finite, independent of
N. DMFT is based on the generating functional

Z½ψ� ¼
Z �YN

i¼1

Dxi

�
P½x�ei

R
dt
P

N
i¼1

xiðtÞψ iðtÞ ð4Þ

of the probability density P½x� of observing a dynamical
path of states xðtÞ ¼ ½x1ðtÞ;…; xNðtÞ� in a fixed time
interval. The correlation functions of fxiðtÞgi¼1;…;N follow
from the derivatives of Z½ψ� with respect to the external
sources ψðtÞ ¼ ½ψ1ðtÞ;…;ψNðtÞ�. The nth moment of the
local variable xiðtÞ,

hxni ðtÞi ¼
Z �YN

i¼1

Dxi

�
xni ðtÞP½x� ¼ ð−iÞn δ

nZ½ψ�
δψn

i ðtÞ
����
ψ¼0

;

ð5Þ

yields the time evolution of the macroscopic quantities
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mðtÞ¼ lim
N→∞

1

N

XN
i¼1

hxiðtÞi; qðtÞ¼ lim
N→∞

1

N

XN
i¼1

hx2i ðtÞi: ð6Þ

Clearly, Z½ψ� fulfills Z½0� ¼ 1.
In [72], we calculate the average of Z½ψ� over the

network ensemble defined by Eq. (2) for finite c, recasting
the problem in terms of the solution of a saddle-point
integral. More importantly, we give a clear physical
interpretation of the order parameters, simplifying the
saddle-point equations and obtaining a feasible solution
for the dynamics in the sparse regime. In the limit N → ∞,
the microscopic dynamical variables decouple, and the path
probability P½x� for the effective dynamics of a single
variable xðtÞ is determined from

P½x� ¼
X∞
k¼0

pin;k

Z �Yk
j¼1

DxjP½xj�
�Z �Yk

j¼1

dJjpJðJjÞ
�

× δF

�
ẋðtÞ þ f½xðtÞ� −

Xk
j¼1

Jjg½xðtÞ; xjðtÞ�
�
; ð7Þ

where δF is the functional Dirac-δ. The macroscopic
observables are computed from mðtÞ ¼ hxðtÞi� and qðtÞ ¼
hx2ðtÞi�, where

hxnðtÞi� ¼
Z

DxxnðtÞP½x� ðn ¼ 1; 2Þ ð8Þ

is the average over the effective dynamics governed by
P½x�. The self-consistent Eq. (7) is the exact solution of a
broad class of models (see Table I) on sparse directed
networks with a local treelike structure [73] and arbitrary
distributions pJ and pk;l ¼ pin;kpout;l. In [72], we address
the more general case of dynamical models with Gaussian
additive noise on networks with correlated indegrees and
outdegrees. The solution of Eq. (7) determines the time
evolution of the full probability distribution of the micro-
scopic variables in the limit N → ∞.
Equation (7) is formally similar to other distributional

equations appearing in the study of sparse disordered
systems [61–66]. Therefore, we can numerically solve this
equation using the population dynamics algorithm
[61,63,64]. In the standard version of this algorithm
[61,64], a probability density is parametrized by a pop-
ulation of stochastic variables. Here, we generalize the
algorithm to calculate P½x� by introducing a population of
dynamical trajectories. At each iteration step, a single path
is chosen randomly from the population and updated
according to the differential equation imposed by the
Dirac-δF in Eq. (7). After sufficient iterations, the pop-
ulation of paths converges to a stationary distribution,
providing a numerical solution for P½x�. A detailed account
of the algorithm is in [72].

In Fig. 1, we compare the solutions of Eq. (7) with
numerical simulations of the original coupled dynamics,
Eq. (1), for finite N. The panels showcase the time
evolution of the mean mðtÞ and the standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðtÞ −m2ðtÞ

p
of the microscopic variables for different

network topologies and three models of Table I: the NN
model of [1], the LV model, and the SIS model of epidemic
spreading. The results in Fig. 1 are for Poisson and
geometric indegrees, where pin;k is given by

pin;k ¼
cke−c

k!
and pin;k ¼

ck

ðcþ 1Þkþ1
; ð9Þ

respectively. In [72], we compare the solutions of Eq. (7)
with numerical simulations for two additional cases: the
NN model on networks with power-law indegree distribu-
tions and the susceptible-infected-susceptible (SIS) model
at the epidemic threshold. In all cases, the agreement
between our theoretical results for N → ∞ and numerical
simulations for large N is excellent, confirming the exact-
ness of Eq. (7).
An important question is whether Eq. (7) recovers the

analytic results of fully connected models as c → ∞
[1,4,28,30]. By taking the limit c → ∞ after the thermo-
dynamic limit N → ∞, we are effectively considering the
scaling regime where c ∝ Na, with 0 < a < 1 [74–77]. We
show in [72] that, in the limit c → ∞, degree fluctuations

FIG. 1. Dynamics of the mean mðtÞ and the standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðtÞ −m2ðtÞ

p
for the SIS model, LV model, and NN model (see

Table I). Results are shown for directed random networks with
average degree c ¼ 5 and two indegree distributions [Eq. (9)]:
Poisson (left column) and geometric (right column). The dis-
tribution pJ of the coupling strengths has mean μJ and standard
deviation σJ ¼ 0.1. For the LV and NN models, pJ is Gaussian;
for the SIS model, pJ is uniform. Solid lines are solutions of
Eq. (7) using the population dynamics algorithm with 5 × 104

paths and initial condition xið0Þ ¼ 10−3. Symbols denote numeri-
cal simulations of Eq. (1) for an ensemble of 10 random networks
generated from the configuration model with N ¼ 4000 nodes.
Vertical bars are the standard deviation of the macroscopic
observables.
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remain significant, andP½x� depends on the full distribution
νinðκÞ of rescaled indegrees κi ¼ Ki=c (i ¼ 1;…; N). The
well-known effective dynamics on fully connected net-
works is only recovered when νinðκÞ ¼ δðκ − 1Þ. This
breakdown in the universality of fully connected models
due to degree fluctuations was anticipated in [74–77].
Phase diagram of neural networks—To demonstrate the

strength of Eq. (7) and its concrete applications, we derive
the phase diagram of the NN model on sparse directed
networks. In this context, xiðtÞ∈R represents the synaptic
current at neuron i, fðxÞ ¼ x, and gðx; x0Þ ¼ tanhðx0Þ. Let us
order the complex eigenvalues fλαgα¼1;…;N of A according
to their real parts as Reλ1 ≥ Reλ2 ≥ … ≥ ReλN . A linear
stability analysis of Eq. (1) shows that x ¼ 0 is stable if
Reλ1 < 1. Based on analytic results for the spectra of
directed networks for N → ∞ [67–69], we find that the
trivial fixed point is stable provided c < cstab, where

cstab ¼
(
1=μJ if c > 1þ σ2J=μ

2
J;

1=ðσ2J þ μ2JÞ if c ≤ 1þ σ2J=μ
2
J:

ð10Þ

The two distinct regimes in Eq. (10) result from the
gap-gapless transition in the spectrum of A [67]. For
c > 1þ σ2J=μ

2
J, the spectral gap jλ1 − λ2j remains finite as

N → ∞, while it vanishes for c ≤ 1þ σ2J=μ
2
J. Equation (10)

holds for μJ > 0 and c > 1. The condition c > 1 ensures

that directed networks with degree distribution pk;l ¼
pin;kpout;l contain a giant strongly connected component
[78,79], implying the existence of a continuous part in the
eigenvalue distribution of A [68].
We emphasize that the linear stability analysis of the

trivial solution provides no information about the relax-
ation dynamics or the stationary solutions that emerge
when x ¼ 0 becomes unstable. Therefore, we study the
dynamics and the stationary states of the NN model by
solving Eq. (7). Figure 2 presents the resulting phase
diagrams for different regimes of μJ. In Phase I, mðtÞ
relaxes exponentially fast to the trivial solution m ¼ 0,
while in Phase II,mðtÞ evolves to a nonzero fixed point. In
Phases III and IV, the neural network exhibits chaotic
activity, characterized by slow and aperiodic oscillations
of mðtÞ [1,30]. The stability lines that delimit Phase I are
universal, as they depend only on the first and second
moments of pJ and pin;k.
Figure 3 characterizes the transition between the fixed-

point Phases I and II. As c approaches the critical mean
degree c� ¼ μ−1J from above, the nontrivial fixed point
m ¼ mðtÞ vanishes continuously. The critical point c� is
independent of pin;k and mðtÞ relaxes exponentially fast
inside Phases I and II. Because of critical slowing down, the
numerical solution of Eq. (7) becomes computationally
more demanding near c�. In Phase II, the neuronal firing
rates evolve to a stationary distribution with a finite
variance. Figure 4 shows the dynamics of mðtÞ within
the chaotic phases for several initial conditions. After
a transient time T tr, mðtÞ stabilizes into an attractor,
oscillating around zero in Phase III and around a nonzero
value in Phase IV. The inset in Fig. 4(a) demonstrates the
sensitivity of mðtÞ to small perturbations in the initial
conditions, characteristic of deterministic chaos [80]. By
solving Eq. (7) and numerically computing the temporal
averages [81]

FIG. 2. Phase diagrams ðc; σJÞ of the NN model for μJ ¼ 0,
μJ ≥ 1, and 0 < μJ < 1. The average synaptic current mðtÞ
relaxes to trivial and nontrivial fixed points in Phases I and II,
respectively. In the chaotic Phases III and IV, mðtÞ exhibits
aperiodic oscillations around zero and nonzero values, respec-
tively (see Fig. 4). The dash-dotted line at c ¼ 1 marks the
percolation threshold, while the dashed curve identifies the gap-
gapless transition. Circles and diamonds represent numerical
results for the transition lines delimiting Phase IV (see the main
text), obtained from solutions of Eq. (7) using population
dynamics with 5 × 104 paths, Poisson indegrees, and two values
of μJ (μJ ¼ 1=3 and μJ ¼ 3=2). The red dot marks
ðc�; σ�JÞ ¼ ½μ−1J ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μJð1 − μJÞ

p �.

FIG. 3. Continuous transition between the fixed-point phases
for the NN model on directed random networks. The coupling
strengths follow a Gaussian distribution with mean μJ ¼ 1=3 and
standard deviation σJ ¼ 0.1. The results are derived from Eq. (7)
using population dynamics with 5 × 104 paths. (a) Fixed-point
solution mðtÞ ¼ m as a function of c for Poisson and geometric
indegrees [Eq. (9)]. (b) Relaxation dynamics of mðtÞ across the
transition for Poisson indegrees and initial condition xið0Þ ¼ 1.
For c < μ−1J , mðtÞ relaxes exponentially to m ¼ 0 as t → ∞.
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M ¼ 1

T − T tr

Z
T

T tr

dtmðtÞ; ð11Þ

Δ2 ¼ 1

T − T tr

Z
T

T tr

dt½M −mðtÞ�2; ð12Þ

for T ≫ 1, we estimate the transition lines delimiting
Phase IV [72]. For T → ∞, the transition between
Phases II and IV is determined by Δ, since Δ ¼ 0 in the
fixed-point phases and Δ > 0 in the chaotic phases. The
parameter M distinguishes the chaotic phases: M ¼ 0 in
Phase III andM ≠ 0 in Phase IV (see Fig. 4). Our numerical
results for the transition between Phases III and IV are
consistent with the dashed line in Fig. 2, suggesting that
this transition is governed by the gap jλ1 − λ2j in the
network spectrum. Nevertheless, for c → ∞ this transition
to the chaotic Phase III slightly deviates from the gap-
gapless transition [30], particularly for large μJ.
Conclusions—We have developed a dynamical mean-

field theory of complex systems on sparse directed net-
works, deriving an exact path-probability equation for the
effective dynamics in the limit N → ∞. Unlike sparse
models with bidirected edges [38,39], our path-probability
equation can be numerically solved using population
dynamics [64]. We confirmed the exactness of our general
solution by comparing it with numerical simulations of
fundamental models in the study of epidemic spreading,
neural networks, and ecosystems. Finally, we applied our
solution to determine the complete phase diagram of the
sparse and directed version of the canonical neural network
model of [1,30].
The numerical solution of Eq. (7) does not require

generating networks from the configuration model [71],
providing moderate computational advantages over large-
scale simulations of Eq. (1) on networks [22]. Beyond its
numerical applications, Eq. (7) provides a foundational
framework for studying the stationary states [4], computing

correlation functions [3], deriving approximate dynamical
equations for macroscopic order parameters, and develop-
ing systematic perturbative approaches [26,82].
Our work paves the way for exploring the role of

sparse heterogeneous networks on the dynamics of
ecosystems, coupled oscillators, epidemic spreading,
and beyond. Future works include determining the phase
diagram of the sparse Lotka-Volterra model [7], the
influence of external noise on phase diagrams [29],
and the role of network heterogeneities on the critical
exponents of complex systems [77,83]. Lastly, it would
be interesting to connect the present formalism with the
cavity method in [84].
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