The Annals of Probability
- Ann. Probab.
- Volume 40, Number 6 (2012), 2299-2361.
Novel scaling limits for critical inhomogeneous random graphs
Shankar Bhamidi, Remco van der Hofstad, and Johan S. H. van Leeuwaarden
Full-text: Open access
Abstract
We find scaling limits for the sizes of the largest components at
criticality for rank-1 inhomogeneous random graphs with power-law
degrees with power-law exponent
Our results should be contrasted to the case
Article information
Source
Ann. Probab., Volume 40, Number 6 (2012), 2299-2361.
Dates
First available in Project Euclid: 26 October 2012
Permanent link to this document
https://projecteuclid.org/euclid.aop/1351258728
Digital Object Identifier
doi:10.1214/11-AOP680
Mathematical Reviews number (MathSciNet)
MR3050505
Zentralblatt MATH identifier
1257.05157
Subjects
Primary: 60C05: Combinatorial probability 05C80: Random graphs [See also 60B20] 90B15: Network models, stochastic
Keywords
Critical random graphs phase transitions inhomogeneous networks thinned Lévy processes multiplicative coalescent
Citation
Bhamidi, Shankar; van der Hofstad, Remco; van Leeuwaarden, Johan S. H. Novel scaling limits for critical inhomogeneous random graphs. Ann. Probab. 40 (2012), no. 6, 2299--2361. doi:10.1214/11-AOP680. https://projecteuclid.org/euclid.aop/1351258728
References
- [1] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.Mathematical Reviews (MathSciNet): MR1895096
Zentralblatt MATH: 1205.82086
Digital Object Identifier: doi:10.1103/RevModPhys.74.47 - [2] Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812–854.Mathematical Reviews (MathSciNet): MR1434128
Zentralblatt MATH: 0877.60010
Digital Object Identifier: doi:10.1214/aop/1024404421
Project Euclid: euclid.aop/1024404421 - [3] Aldous, D. and Limic, V. (1998). The entrance boundary of the multiplicative coalescent. Electron. J. Probab. 3 59 pp. (electronic).Mathematical Reviews (MathSciNet): MR1491528
Zentralblatt MATH: 0889.60080
Digital Object Identifier: doi:10.1214/EJP.v3-25 - [4]
Aldous, D. J. (1999). Deterministic and stochastic models for
coalescence (aggregation and coagulation): A review of the mean-field
theory for probabilists. Bernoulli 5 3–48.Mathematical Reviews (MathSciNet): MR1673235
Digital Object Identifier: doi:10.2307/3318611
Project Euclid: euclid.bj/1173707093 - [5] Alon, N. and Spencer, J. H. (2000). The Probabilistic Method, 2nd ed. Wiley, New York. With an appendix on the life and work of Paul Erdős.
- [6] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
- [7] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge.
- [8]
Bhamidi, S., van der Hofstad, R. and van Leeuwaarden, J. S. H. (2010).
Scaling limits for critical inhomogeneous random graphs with finite
third moments. Electron. J. Probab. 15 1682–1703.Mathematical Reviews (MathSciNet): MR2735378
Zentralblatt MATH: 1228.60018
Digital Object Identifier: doi:10.1214/EJP.v15-817 - [9] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
- [10] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73. Cambridge Univ. Press, Cambridge.
- [11] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31 3–122.
- [12] Britton, T., Deijfen, M. and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124 1377–1397.Mathematical Reviews (MathSciNet): MR2266448
Zentralblatt MATH: 1106.05086
Digital Object Identifier: doi:10.1007/s10955-006-9168-x - [13] Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99 15879–15882 (electronic).Mathematical Reviews (MathSciNet): MR1944974
Zentralblatt MATH: 1064.05137
Digital Object Identifier: doi:10.1073/pnas.252631999 - [14] Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Comb. 6 125–145.Mathematical Reviews (MathSciNet): MR1955514
Zentralblatt MATH: 1009.05124
Digital Object Identifier: doi:10.1007/PL00012580 - [15] Chung, F. and Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1 91–113.Mathematical Reviews (MathSciNet): MR2076728
Zentralblatt MATH: 1065.05084
Digital Object Identifier: doi:10.1080/15427951.2004.10129081
Project Euclid: euclid.im/1057768561 - [16] Chung, F. and Lu, L. (2006). Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics 107. Conference Board of the Mathematical Sciences, Washington, DC.
- [17] Chung, F. and Lu, L. (2006). The volume of the giant component of a random graph with given expected degrees. SIAM J. Discrete Math. 20 395–411 (electronic).Mathematical Reviews (MathSciNet): MR2257269
Zentralblatt MATH: 1119.05098
Digital Object Identifier: doi:10.1137/050630106 - [18] Dorogovtsev, S. N. and Mendes, J. F. F. (2002). Evolution of networks. Adv. Phys. 51 1079–1187.
- [19] Durrett, R. (2007). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
- [20] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
- [21] Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Processes, 3rd ed. Oxford Univ. Press, New York.
- [22] Hatami, H. and Molloy, M. (2009). The scaling window for a random graph with a given degree sequence. Available at arXiv:0907.4211.
- [23] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin.
- [24] Janson, S. (2008). The largest component in a subcritical random graph with a power law degree distribution. Ann. Appl. Probab. 18 1651–1668.Mathematical Reviews (MathSciNet): MR2434185
Zentralblatt MATH: 1149.60007
Digital Object Identifier: doi:10.1214/07-AAP490
Project Euclid: euclid.aoap/1216677136 - [25] Janson, S. (2010). Asymptotic equivalence and contiguity of some random graphs. Random Structures Algorithms 36 26–45.
- [26] Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. Wiley, New York.
- [27] Joseph, A. (2010). The component sizes of a critical random graph with pre-described degree sequence. Preprint.
- [28] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
- [29] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.
- [30] Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45 167–256 (electronic).Mathematical Reviews (MathSciNet): MR2010377
Zentralblatt MATH: 1029.68010
Digital Object Identifier: doi:10.1137/S003614450342480 - [31] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. in Appl. Probab. 38 59–75.Mathematical Reviews (MathSciNet): MR2213964
Zentralblatt MATH: 1096.05047
Digital Object Identifier: doi:10.1239/aap/1143936140
Project Euclid: euclid.aap/1143936140 - [32] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.
- [33] Turova, T. S. (2009). Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1. Preprint.
- [34] van der Hofstad, R. (2009). Critical behavior in inhomogeneous random graphs. Preprint.
- [35] van der Hofstad, R. (2011). Random graphs and complex networks. Unpublished manuscript. Available at http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf.
- [36] van der Hofstad, R., Janson, S. and Luczak, M. The near-critical behavior for the configuration model with finite-variance degrees. Unpublished manuscript.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Scaling Limits for Critical Inhomogeneous Random Graphs with Finite Third Moments
Bhamidi, Shankar, van der Hofstad, Remco, and van Leeuwaarden, Johan, Electronic Journal of Probability, 2010 - Critical random hypergraphs: The emergence of a giant set of identifiable vertices
Goldschmidt, Christina, The Annals of Probability, 2005 - Feller property of the multiplicative coalescent with linear deletion
Ráth, Balázs, Bernoulli, 2019
- Scaling Limits for Critical Inhomogeneous Random Graphs with Finite Third Moments
Bhamidi, Shankar, van der Hofstad, Remco, and van Leeuwaarden, Johan, Electronic Journal of Probability, 2010 - Critical random hypergraphs: The emergence of a giant set of identifiable vertices
Goldschmidt, Christina, The Annals of Probability, 2005 - Feller property of the multiplicative coalescent with linear deletion
Ráth, Balázs, Bernoulli, 2019 - The eternal multiplicative coalescent encoding via excursions of Lévy-type processes
Limic, Vlada, Bernoulli, 2019 - Critical window for the configuration model: finite third moment degrees
Dhara, Souvik, van der Hofstad, Remco, van Leeuwaarden, Johan S.H., and Sen, Sanchayan, Electronic Journal of Probability, 2017 - The component sizes of a critical random graph with given degree sequence
Joseph, Adrien, The Annals of Applied Probability, 2014 - Component sizes for large quantum Erdős–Rényi graph near criticality
Dembo, Amir, Levit, Anna, and Vadlamani, Sreekar, The Annals of Probability, 2019 - Asymptotics for the size of the largest component scaled to “logn” in inhomogeneous random graphs
Turova, Tatyana S., Arkiv för Matematik, 2013 - The front of the epidemic spread and first passage percolation
Bhamidi, Shankar, van der Hofstad, Remco, and Komjáthy, Júlia, Journal of Applied Probability, 2014 - Combinatorial approach to the interpolation method and scaling limits in sparse random graphs
Bayati, Mohsen, Gamarnik, David, and Tetali, Prasad, The Annals of Probability, 2013