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Breakdown of random-matrix universality in persistent Lotka—Volterra communities
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The eigenvalue spectrum of a random matrix often only depends on the first and second moments
of its elements, but not on the specific distribution from which they are drawn. The validity
of this universality principle is often assumed without proof in applications. In this letter, we
offer a pertinent counterexample in the context of the generalised Lotka—Volterra equations. Using
dynamic mean-field theory, we derive the statistics of the interactions between species in an evolved
ecological community. We then show that the full statistics of these interactions, beyond those
of a Gaussian ensemble, are required to correctly predict the eigenvalue spectrum and therefore
stability. Consequently, the universality principle fails in this system. We thus show that the
eigenvalue spectra of random matrices can be used to deduce the stability of ‘feasible’ ecological
communities, but only if the emergent non-Gaussian statistics of the interactions between species

are taken into account.

The theory of disordered systems enables one to de-
duce the behaviour of collections of many interacting con-
stituents, whose interactions are assumed to be random,
but fixed in time [1]. A related discipline, random matrix
theory (RMT), is concerned with the eigenvalue spectra
of matrices with entries drawn from a joint probability
distribution. Both fields have found numerous applica-
tions in physics [2, 3] (the study of spin glasses in partic-
ular [1]), and in other disciplines such as neural networks
[4-8], economics [9, 10] and theoretical ecology [11-17].

It is frequently assumed that the distribution of the
randomness in RMT or disordered systems is Gaussian,
possibly with correlations between different interaction
coefficients or matrix entries. Reasons cited for this
assumption include analytical convenience, maximum-
entropy arguments and the observation that higher-order
moments often do not contribute to the results of calcu-
lations [1, 18, 19].

In random matrix theory, this latter observation is re-
ferred to as the principle of universality [20-22]. The
principle states that results obtained for the spectra of
Gaussian random matrices frequently also apply to ma-
trix ensembles with non-Gaussian distributions. The
conditions for universality to apply are usually mild
(higher-order moments of the distribution must fall off
sufficiently quickly with the matrix size [20, 21]), and it
is often tacitly assumed that these conditions will hold.

In this letter, we offer a pertinent counterexample to
the universality principle in RMT. We focus on the eco-
logical community resulting from the dynamics of the
generalised Lotka—Volterra equations with random inter-
action coefficients. The stability of this community is
governed by the interactions between species that sur-
vive in the long run [23, 24]. This is a sub-matrix of
the original interactions, which we will refer to as the
‘reduced interaction matrix’.
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Firstly, using dynamic mean-field theory [25], we ob-
tain the statistics of the elements in the reduced inter-
action matrix. These turn out to be non-Gaussian (even
when the original interaction matrix is Gaussian). Sec-
ondly, we analytically calculate the leading eigenvalue
of this non-Gaussian ensemble of random matrices. We
show that this eigenvalue is different from the one that
we would obtain from a Gaussian ensemble with the same
first and second moments as in the reduced interaction
matrix. This demonstrates that the principle of univer-
sality fails, and it indicates that the Gaussian assumption
should not be made lightly.

Our findings have relevance to the random matrix ap-
proach to ecosystem stability, introduced by Robert May
[11, 12]. This approach assumes a random interaction
structure between species in the community. One line
of criticism of May’s model is the observation that such
interactions do not necessarily describe a feasible equilib-
rium (that is, an equilibrium for which all species abun-
dances are positive) [23, 26-29]. The community of sur-
viving species in the generalised Lotka—Volterra model on
the other hand is feasible by construction, and we derive
the statistics of the emergent random matrix ensemble
that describes this community [24, 30-32]. From this en-
semble, we then recover the stability criteria that have
previously been derived from the dynamic Lotka-Volterra
model [15, 33]. We thus show that one can construct a
random matrix ensemble (in the sense of May) that cor-
rectly reflects the stability of a feasible community of
coexistent species. This ensemble is non-Gaussian and
quite intricate. In May’s words, our work contributes to
‘elucidating the devious strategies of nature which make
for stability in enduring natural systems’ [34].

We start from the generalised Lotka-Volterra equations
(GLVEs) [15, 33]

i’i = XT; 1 —xiJrZaijmj y (].)
ij

where the x; > 0 describe the abundances of species i =



1,...,N. The interaction matrix elements in Eq. (1) a;;
are quenched random variables. We refer to these as the
‘original interaction matrix’ elements. We assume that
the mean of each matrix element is @;; = u/N (we use
an overbar to denote averages over the ensemble of inter-
action matrices), and that they have variance Var(a;;) =
02/N. We also allow for correlations between diagonally
opposed matrix elements, Corr(a;;,aj;) =T, (-1 <T' <
1) where Corr(a,b) = (ab — @b)/+/Var(a)Var(b).

The scaling with IV of the moments of a;; follows the
standard conventions in disordered systems [1] and guar-
antees a well-defined thermodynamic limit N — oco. All
our results are independent of the higher moments of a;;
as long as these moments decay sufficiently quickly with
N. Further details can be found in Sec. S1 of the Sup-
plemental Material (SM).
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FIG. 1. Stability diagram [15, 33] of the GLVE system in the
plane spanned by p and o for fixed values of the correlation
parameter I". Solid lines indicate the M — oo transition,
dashed horizontal lines the linear instability. These lines were
produced using Egs. (S22) and (S28) in the SM respectively.
Vertical lines mark the values of y used in the two panels of
Fig. 3. The system has a unique stable fixed point below the
dashed lines and to the left of the solid lines.

Previous analyses of this system [15, 33] in the ther-
modynamic limit have shown that there is a range of pa-
rameter combinations j, 02 and T for which the dynamics
reaches the a unique stable fixed point, independently of
the starting conditions. This is the case in the region
to the left and below the instability lines in the phase
diagram in Fig. 1.

When a fixed-point solution is reached, not all species
survive, i.e. there are some species for which z} > 0 and
others with 27 = 0 (we use an asterisk to denote the fixed
point). Using dynamic mean-field theory (DMFT), one
can deduce these statistics of the species abundances at
the fixed point.

From the DMFT analysis, one can also find the combi-
nations of system parameters at which the system is no
longer able to support a unique stable fixed point. There
are two types of transition: (1) the average species abun-

dance can diverge [i.e., M — oo], or (2) the fixed-point
solution can become linearly unstable to perturbations.
Closed-form expressions for the critical sets of parame-
ters (o, I and p) at which each of these transitions occur
were derived in [15, 33]. A selection of phase lines for
different values of the correlation parameter I' are shown
in Fig. 1.
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FIG. 2. The eigenvalues of the reduced interaction matrix.
Results from a computer simulation of the GLVE are shown
as markers. The solid red curve and the hollow circle show the
theoretical predictions for the bulk region and outlier eigen-
value in Egs. (4) and Egs. (S71)—(S73) of the SM respectively.
Two naive predictions for the outlier that do not take the full
statistics of the reduced interaction matrix into account are
shown as a yellow triangle (Ao in the text) and an orange
square (A1 in the text). System parameters are o = 1.1,
w=0.9, I' = —0.5, simulation data is from a single realisa-
tion with N = 10000.

We now examine an alternative approach to analysing
the stability of the GLVEs in Eq. (1). Namely, we
consider the reduced interaction matrix (the interac-
tion matrix between the species in the surviving sub-
community). More precisely, this is defined by

aj; = aij — dij, (2)

where i,j € S (with S the set of surviving species), and
where the shift in the diagonal elements reflects the —zx;
term inside the brackets of Eq. (1). It can be shown that
a fixed point of the GLVEs is stable if and only if all of
the eigenvalues of the reduced interaction matrix have
negative real parts [16, 23, 24] (see also Sec. S2 in the
SM).

We note that the statistics of the reduced interaction
matrix elements are determined by the extinction dynam-
ics in the GLVE system, and are consequently vastly dif-
ferent to those of the original interaction matrix [31, 35].
For instance, they are non-Gaussian (even when the a;;
are Gaussian), and there are correlations between ele-
ments sharing only one index (see SM Sec. S6). This
makes the calculation of the eigenvalue spectrum of the
reduced interaction matrix a non-trivial task.



As is illustrated in Fig. 2, the spectrum of the reduced
interaction matrix consists of a bulk set of eigenvalues
and a single outlier. Writing z;; = a;; — uN~! (where
once again i,j € §), both the outlier eigenvalue Aoutiier
and the bulk spectral density ppux(A\) can be obtained

from the resolvent matrix G = [wl — é_l. The bulk
density is calculated from the trace of G via well-known

relations [36]. The outlier eigenvalue in turn fulfils [37-
39]

1
po’

where G (w) = (Nqb)_lzm.es Gij(w), and where ¢ is the
fraction of surviving species at the fixed point.

We first briefly discuss the bulk spectrum, for which
the results do not run counter to the universality princi-
ple. We use a series expansion for a Hermitized version
of the resolvent of the reduced interaction matrix. This
standard approach accounts for the non-analytic nature
of the resolvent in the bulk region [40, 41].

We find that the resulting series for the trace of the
resolvent matrix is identical to that of a Gaussian ran-
dom matrix in the limit N — oo. That is, we show
that the higher-order statistics of the reduced interac-
tion matrix do not contribute to this series and, there-
fore, that the universality principle holds for the bulk
region. The only statistics of the reduced interaction
matrix that contribute are (0’)> = N Var(aj;) = ¢o?
and I = Corr(aj;,a};) = I where Ny is the number of
surviving species (we calculate these statistics in Sec. S6
of the SM). One obtains the familiar elliptic law

g (1 + Aoutlier) - (3)
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where A = z + iy. We can show (SM Sec. S5C) that the
bulk of the eigenvalue spectrum crossing the imaginary
axis corresponds to the linear instability of the GLVEs,
represented by the dashed horizontal lines in Fig. 1. This
is verified in Fig. 3(a).

We now move on to the outlier eigenvalue, which is
a far less trivial matter. We first discuss two candidate
expressions for the outlier eigenvalue based upon calcu-
lations for Gaussian random matrix ensembles. We show
that neither of these expressions are accurate, and that
the universality principle fails to predict the outlier eigen-
value. We subsequently derive an accurate expression for
the outlier, which we show correctly predicts stability.

Noting previous work [13, 22, 37, 42], one might per-
haps expect that p' = stj (i # j), together with
(0/)? and T’ would be sufficient to predict the out-
lier eigenvalue of the reduced interaction matrix. Us-
ing an established formula for the outlier eigenvalues
of Gaussian random matrices [37, 42], one then obtains
AO — _1 _|_‘ul +F/OJ2///['/'

If we also include the effects of correlations between
elements sharing only one index v/ = N 2Corr(a§j,a;”)

(where k # i), we arrive at (using results from our pre-

vious work [39])
47/0/2 B
{1+ W 1] . (5)

The approach leading to Eq. (5) takes into account all
possible correlations for a Gaussian random matrix with
statistical symmetry between different species. We note
that correlations between elements in the same row or
column also exist in the reduced interaction matrix (see
SM Sec. S6A), but these do not affect the location of the
outlier [39].

If the universality principle were to apply to the re-
duced interaction matrix, then the Gaussian predic-
tion A\; and the true outlier eigenvalue would coincide,
whether or not the elements of the reduced interaction
matrix were also Gaussian distributed. As can be seen in
Fig. 4, A\q is a better approximation than Ay, but neither
expression correctly predicts the outlier.

We now take into account the full statistics of the ma-
trix elements agj, as we did when calculating the bulk
eigenvalue spectrum, and deduce the correct expression
for the outlier eigenvalue. In the region of the complex
plane outside the bulk (where the outlier resides), the re-
solvent can be expanded as a series in 1/w [Eq. (S36) in
the SM]. We evaluate each term in this series in terms of
the statistics of species abundances, which are available
to us via DMFT. This is accomplished via a generating-
functional approach (SM Sec. S4).

Using diagrammatic techniques to recognise the self-
similarity of the resulting series, we arrive at a compact
formula for the resolvent [SM Eq. (S69)]. Using Eq. (3),
we then obtain an implicit set of equations for the out-
lier eigenvalue in terms of the statistics of the surviving
species abundances [see Egs. (S71)—(S73) in the SM]. We
emphasise that in finding our final expression for the out-
lier, no approximations have been made other than as-
suming the thermodynamic limit. The simulation data in
Figs. 3 and 4 verifies that the expression in Eqgs. (S71)-
(S73) accurately predicts the outlier eigenvalue.

We also demonstrate analytically (see SM Sec. S4D)
that this prediction for the outlier eigenvalue correctly
predicts instability of the fixed point of the GLVE sys-
tem. That is, Aoutlier Crosses the imaginary axis precisely
at locations in parameter space where the M — oo tran-
sition occurs in the GLVEs. This is also verified in Figs.
3 and 4.

We thus conclude that stability cannot be predicted
from the reduced interaction matrix using Gaussian ran-
dom matrix results, even if all correlations are accounted
for. This indicates that the extinction dynamics leads to
some more intricate structure to the interactions in the
surviving community.

Advancing ideas in Refs. [24, 31], we show in the
SM (Sec. S10) how one can generate the ensemble of
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FIC. 3. Panel (a): Right edge of the bulk of the eigenvalue spectrum of the reduced interaction matrix versus o for different
values of the system parameter I' and fixed = —0.5. Markers are the result of averaging the results of 10 simulations of the
GLVE with N = 4000. The dashed coloured lines are given by Acage = —1 + 01/d(1 +T'), and the vertical dot-dashed lines are
the points where the linear instability occurs in the GLVE (see the dashed lines in Fig. 1). Panel (b): Outlier eigenvalue of the
reduced interaction matrix versus o at fixed u = 0.6 and for the same values of T' as in panel (a). Markers are the result of
averaging the results of 10 simulations with N = 4000. The solid lines are the analytical result in Eqgs. (S71)—(S73) of the SM,
and the vertical dot-dashed lines are the points where M — oo in the GLVE (see the solid lines in Fig. 1).

reduced interaction matrices ‘from scratch’ (i.e. with-
out running the Lotka—Volterra dynamics and eliminat-
ing extinct species). This is achieved by first drawing
a set of mock abundances from the known distribution
of GLVE fixed-point abundances [15, 31]. Subsequently,
one then draws interaction matrices from a carefully con-
structed distribution, which is dependent on the mock
abundances. We verify in the SM that this bottom-
up construction leads to non-Gaussian matrices with the
same statistical properties and leading eigenvalue as the
ensemble of true reduced interaction matrices.

Having constructed the reduced interaction matrix en-
semble in this way, we can thus see more clearly why
universality fails to capture stability. The ensemble is
manifestly non-Gaussian with complex interdependencies
between matrix elements. By making a simple Gaussian
assumption and ignoring the higher-order moments, one
does not correctly take into account this intricate under-
lying structure.

Finally, we perform some additional tests of our results
to demonstrate their robustness. For example, realistic
ecological communities might be composed of only a rel-
atively small number of species. We have verified that
our expression for the outlier in Eqgs. (S71)—(S73) of the
SM is also a better predictor of stability than the more
naive theories when N = 50, leading to communities of
about surviving 25 species (Fig. S4 in the SM). It has
also been pointed out that heterogeneity of carrying ca-
pacities across species can significantly affect ecological
equilibria [31, 43]. We show in Sec. S9 of the SM that
our conclusions continue to hold in such situations.

To conclude, we have deduced the stability of the gen-
eralised Lotka-Volterra system by calculating the eigen-
value spectrum of the interaction matrix of the surviving
species. We have shown that results that are derived for

Gaussian random matrices, which are often assumed also
to apply to non-Gaussian ensembles, fail in this case. In-
stead, higher-order statistics of the reduced interaction
matrix must be taken into account. We have therefore
found a non-contrived class of random matrices for which
the universality principle of RMT is not applicable. This
demonstrates that there are limitations to results in RMT
that are derived making an assumption of Gaussian in-
teractions. Universality should therefore not be invoked

FIG. 4. Outlier eigenvalue of the reduced interaction matrix
as a function of o2, at fixed y = 0.6,T" = —0.2. Markers indi-
cate the results of computer simulations (N = 1000, averaged
over 10 trials). The solid line is from Egs. (S71)-(S73) of
the SM, whereas the dashed line and dot-dashed lines are the
two naive predictions Ao and A; (respectively) given in the
text. The vertical dot-dashed line marks the point at which
M — oo in the GVLE (see the solid lines in Fig. 1).



without careful consideration.

Our results also have immediate relevance for the field
of theoretical ecology. In the widely used approach pio-
neered by Robert May [11, 12], one supposes that the Ja-
cobian governing small deviations of species abundances
about a fixed point can be represented by a random ma-
trix. May does not say what the dynamics are that lead
to this Jacobian. One particular objection to this ap-
proach is hence that the statistics of May’s random ma-
trices do not necessarily correspond to ‘feasible’ equilibria
[22, 23, 26, 28].

The fixed point of the GLVEs is feasible by construc-
tion. Therefore, our work shows that the stability of a
feasible equilibrium in a complex ecosystem can be found
by studying the eigenvalues of a random interaction ma-
trix. Feasibility is reflected in the higher-order statistics

of the interactions between species. Crucially, we find
that these intricate statistics cannot be ignored if one is
to correctly predict stability.
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S1. DYNAMIC MEAN-FIELD THEORY AND PHASE TRANSITIONS

For completeness, we show in this section how dynamic mean field theory can be used to
deduce which sets of interaction statistics of the original Lotka—Volterra community can give rise to
stability. This has previously been described in [S1], see in particular the Supplementary Material
of this earlier work. In the course of this calculation, we introduce the generating functional
formalism and some quantities of interest that will be necessary for quantifying the statistics of
the reduced interaction matrix later.

A. Effective process

We begin with the generalised Lotka-Volterra equations [S2, S3]

T, =x; |1 —x;+ Zaijxj + hi(t) , (Sl)
J

where h;(t) is an external field, which is included for the purposes of the calculation, but which is
later set to zero (the fields are therefore not a part of the model as such). The original interaction
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matrix elements have the following statistics

aij = pu/N,
(aij — u/N)? = a*/N,
(aij — u/N)(aji — p/N) =To?/N. (S2)

The corresponding generating functional [S4], from which the complete statistics of the process can
be derived, is

20 = [ Dlx e (% [ a aie) { 45 1)+ Do) + it
¢ J

X exp (z Z / dtxi(t)wi(t)> . (S3)

For later convenience, we define 6;(t) = O(x;), where ©(-) is the Heaviside function. We also write
0; = lim;_o, 0;(t) (in the phase where the system reaches a fixed point). Further, we introduce ¢(t)
as the fraction of species that are survive until time ¢ and N the eventual number of surviving

species respectively,

o(t) = 5 2_0:(0)
Ng = lim > 0;(t). (S4)

We write ¢ = Ng/N for the asymptotic fraction of surviving species in the fixed point phase.

Now, following for example Refs. [S5-S7] (especially Ref. [S8] in the context of the current
problem), we perform a dynamic mean-field analysis. First one finds the disorder-averaged gener-
ating functional m, keeping only leading order terms in N~! in the exponent. We note that in
taking the disorder average, we do not require a;; to be Gaussian random variables. Merely, we
require that the higher moments of a;; decay sufficiently quickly with N ~! 50 that we only need
to include up to quartic order terms in x; and z; [S9, S10].

Then, by defining appropriate ‘order parameters’ and performing a saddle-point approximation,
which is valid in the thermodynamic limit N — oo, we find the following approximate expression

for the generating functional

Zo[v] zf[l [/D[u’ﬂi,@] exp (i/dt 7/%(75)951'(75))

X exp <i/dt zi(t) [28 — 1+ x(t) — pM(t) + To? /dt’G(t,t’)x(t’) — hi(t)D

X exp (022 /dt dt’C(t,t’)@(z&)@-(f’)) ] (S5)

where we note that each species is now statistically equivalent. The quantities M (t), G(t,t') and
C(t,t") are defined self-consistently via
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R(t? t/) = <5hz(t/)> =i <xl(t):i'l(t,)> )
Ct.1) = (mO)mi(t)) = (zi()ai(t)), (S6)

where the angular brackets represent averages with respect to the disorder-averaged generating

functional

B A . . o (t) , o
<...>_/D[X,X] [-]exp z% /dt 2(t) o) 1—ai(t) + Ej aijzj(t)
0.2
zé/Dkxﬂ~JWp<2/ﬁmw§jmmw@@@w0

X exp (z / at Y ) [”bi(t) 14 my(t) — pM(t) + To? / dt’G(t,t’)x(t’)]) (s

w;(t)

where (2 is a normalisation constant. We also find that for large N

o(t) = (0:(t)),
Ny = N lim o(t). (S8)

It is in performing the saddle-point calculation that the necessity for the scaling with N of the
statistics in Eq. (S2) becomes apparent. If we had chosen instead, for example, @;; = 1, then the
term pM in Eq. (S5) would instead be NpM, which is of the order N. This would mean that this
term would dominate the argument of the exponential in the limit N — oo.

However, once the saddle-point calculations have been performed, and using the observation
that predictions formally derived in the limit N — oo also hold to a good approximation for finite
N (see Sec. S7), one can map our choice of moments to that usually made in theoretical ecology
as was done for example in Refs. [S11, S12]. This is described briefly in Sec. S1B below.

We thus see that in the thermodynamic limit, the disorder-averaged generating functional can
be written as the product of N identical generating functionals. From the form of these factors one
can deduce that each species can be approximated as obeying a self-consistent stochastic process
of the form

@i =a; |1 — 2 + pM(t) + To? / dt' R(t,t)zi(¢') + omi(t) |, (m(Omi(t)) = C(t,1),  (S9)

where we use the fact that the angular brackets can also be thought of as averages over realisations
of the coloured noise 7;(t). Similar effective single-species dynamics have also been obtained using
the cavity approach [S13]. We note that the response function R(¢,t) and the average abundance
M (t) are also to be obtained self-consistently as averages over realisations of the process in Eq. (S9).
We note further that the site index i serves no further purpose in Eq. (S9), we will therefore drop
this index from now on.

For the sake of later analysis, we also define the following response functions

T(t,6) = gy ) = ~ilB:0()).

2
Tr(t,t') = <5h(ff’)95(ht)(t”)> = —{O®)z(Hz(")). (S10)
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B. Comment on scaling of moments of the interaction matrix elements with N

For the statistics of the original interaction matrix elements, we use a mean p/N and a variance
02/N [see Eq. (S2)]. Many studies in theoretical ecology (see the discussion below for examples)
would use pp and 0'125 without the scaling with N (the subscript stands for ‘ecology’). There is
therefore a direct mapping between the two parameterisations, 4 = Nug and 02 = N 0]25. The
parameter I' does not undergo any change, I' = ' [S11].

In this way, any combination of N, up and U?E can be mapped onto a set of parameters with the
physics scaling (1 = Nug and 02 = N agE). Assuming that the theoretical predictions, formally
derived in the limit N — oo, are valid as an approximation also for finite N (we confirm this in
Sec. S7), the phase diagram obtained in terms of the physics parameters (Fig. 1 in the main paper),
can then be used to decide if the system is stable or not.

For example, for a given u = Nug, the generating functional calculation will generally indicate
2

2 with 2 some ‘critical’ value, which will

that the system becomes unstable at a value of 62 = o,
in general depend on I'. Assuming that the results apply (as an approximation) to systems with
finite N one can then conclude that the system becomes unstable when No% = o2.

Similar principles are indeed used by May [S14], and Allesina and Tang [S12]. Allesina and
Tang for example make use of earlier results by Sommers et al in the physics literature [S15] on the
spectra of random matrices. These results are also derived in the thermodynamic limit and using
a scaling of the moments of the random matrix with N. Allesina and Tang then convert this into
the parameter set that is commonly used in theoretical ecology, using a similar transformation as
above, and assuming that the results in [S15] hold for finite N. This then generates the explicit

factors of IV in the resulting stability criteria.

C. Fixed-point analysis

We now wish to construct the stability plot in Fig. 1 in the main text, following [S1]. First, we
note that the fixed point quantities defined in Eqgs. (2) and (3) of the main text are given by

¢—N1520*Z€
—NIEHOONZ%

g= lim —le xy, (S11)

N—ooo N

and

t
o= i i 30 [0 >

hi(t’):O

Xr = tli)rgj]\}gnooz/ ar ’

hi (t/)=0
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(S12)

1 y 0%0i(t)
Xo = lim lim Z / / A i sy

respectively. These quantities can also be written in terms of averages over realisations of the

h; (t’):hi (t”)ZO

effective dynamics

L , /1 0x(t)
X_tlggo dt <o‘577( t) /)’
L , /1 6(t)
Xr _tlggo dt <a‘577(t/) ’

x2 = 5330/ / LT 5)96(77)@") )
5= lim (6(0),
¢ lim (2 (t),
M = lim (x(t)). (S13)

Setting @ = 0 in Eq. (S9) after dropping the index i, we thus obtain the following expression for
the fixed points of the surviving species

o 1—|—,uM—|—U\/§z® 1+uM +o0./qz
N 1—-To2x 1—-To2y ’

(S14)

where z is a Gaussian random variable with zero mean and unit variance. Following [S1], this then

leads to the self-consistency relations (with Dz = %6_22/ 2)
1 A
X = W / bz
M = 1 —F02 / Dz (A —2)
1 = U/ Dz (A —z2)? (S15)
T—To0? oo ’
where A = 1%]\/[ We also have
A
= / Dz,
Xt = un T o mg.
d? A
X2 = ¢ _ e A2, (S16)

dh? ~ 52q\2r

For positive integers ¢ we now define the following truncated Gaussian integrals

A
= / Dz (A —2)". (S17)
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Explicitly, we have

wo(A) = ;{l—kerf <\%>]
wi(A) = ;[e_N/Q 72T+A<1—|—erf <§§>>]
wy(A) = %(1+A2) [1+erf <§§>] +\/12?€A2/2A. (S18)

One also has the relation

After some algebra, we derive from Eqs. (S15) a single equation that we can solve to find A for
a given (u, o, ") [the interaction statistics of the original community — see Eq. (S2)]. That is, we

solve the following numerically for A

_ w2 (A)
ot = [wa(A) JQerO(A)P' (520)

We see therefore that A is independent of . We can then obtain the remaining fixed-point order

parameters by substituting this value of A into

X = w0+wa(2)7
w2
1 _ A w2
M N ’wilwg—i—l_‘wo7'LL7
. M w9 2
= <011J1w2+Fw0> ’
¢ = wo,
IS S
X1 U\/(j(wl wWo ),
A
X2 = —0_72q(w1 —A’wo). (821)

D. Transitions

The validity of the fixed point solution can break down in two different ways, indicating the

onset of instability.

1. Diverging abundances

One transition occurs when the average fixed-point abundance diverges, i.e. M — oo. Con-
sulting Eqs. (S20) and (S21), the sets of points at which this transition occurs (for a fixed T")
obey

_ A w9
w1y Wy + Fwo’
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2 _ w2
o° = (w3 + T2 (522)

These can be viewed as a parametric set of equations in A for the phase transition line in the y—o
plane (with I held fixed). From these equations, the solid lines in Fig. 1 in the main text can be
produced.

2. Linear instability

The other transition occurs when the fixed point becomes linearly unstable to perturbations.
Linearising the effective process in Eq. (S9) about its fixed point, we obtain for small perturbations
€(t) = x(t) — 2* and 0n(t) = n(t) — o/qz that arise from an external white noise £(t)

- {—e o / G V)e(t!) + oon(t) + €| | (S23)

where a* satisfies Eq. (S14) and (£(¢)&(¢)) = 6(t — ') and (§) = 0. Taking the Fourier transform
(indicated by a tilde in the following), rearranging and taking the limit w — 0 [S7], we find

1
. ~ I
tim (&)%) = o gEg —oF (s24)
The object on the right diverges when
(1-To?x)* =¢o, (S25)

indicating that our solution no longer holds and that the system becomes unstable to perturbations.
Using Egs. (S15) we therefore deduce

1
0= o2(1+1)%’
1
S — 2
X =521 +1) (526)
Finally, using Eqs. (S21), we see that
wetTép 14T
= Wy = ¢7
=¢=1/2
= A =0. (S27)

So finally, substituting ¢ = 1/2 into the first of Eqs. (S26), we see that an instability occurs when

2
2
= S28
G ENVEL (528)
as previously derived in [S1]. Using Eq. (S28), one obtains the dashed horizontal lines in Fig. 1 in
the main text.
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S2. REDUCED INTERACTION MATRIX AND JACOBIAN MATRIX

A. Definitions of the matrices

We now introduce and discuss several different matrices. One is the full (or original) N x N
interaction matrix g, with elements a;;. A second matrix is what we call the ‘reduced interaction
matrix’, @’. This is obtained from the original interaction matrix by removing all rows and columns
corresponding to extinct species, and by carrying out a shift of the diagonal elements by —1 to
capture the —z; term inside the square bracket of the generalised Lotka-Volterra Egs. (1) in the
main paper. This reduced matrix is of size Ng x Ng, where Ng is the number of surviving species in
the long run [see Eq. (S4)]. We denote the reduced interaction matrix elements by a;; = (a;; — d;;)
for i,j € S, where S is the set of surviving species as t — oco.

Similarly, we also define the full and reduced Jacobian matrices of the GLVEs, J and J' respec-
tively. The (full) Jacobian of the system (about the fixed point z*) takes the form

Jij = 51']' 1-— 1‘: + Z aija:; + x: (aij — (52]) , (829)
J

where 4,5 =1,..., N.

We now imagine that (in a particular realisation) we re-arrange the species indices such that
1 =1,..., Ng are the surviving species, and ¢ = Ng+1,..., N the extinct species. This can always
be done retrospectively without loss of generality. The Jacobian can then be written in block form

J- (‘é ) ($30)

The reduced Jacobian J " makes up the upper left Ng x Ng block. We label the lower right-hand
(N — Ng) x (N — Ng) block D. The upper-right block is labelled B. For an extinct species i we
have J;; = 0 for all j # i [Eq. (S29)]. Hence the block on the lower left is zero, and the matrix D
is diagonal.

[iQllisv

We hence have

det (J — A y) = det(J" — My )det(D — Al y_ny), (S31)

(where 1 is the identity matrix of size NV x N), and the eigenvalues of .J are given by the combined
eigenvalues of J " and D.

We focus first on a species i that goes extinct (] = 0). For such a species, one finds J;; =
1 -z + zj al-ja:]*- < 0. Hence D is a diagonal matrix with only negative diagonal entries, and so
we need only consider the eigenvalues of J' to determine stability.

Now we consider the reduced Jacobian J'. Given that 1 — x} + >, a;x} = 0 for values of i
corresponding to surviving species, we see from Eq. (S29) that the reduced Jacobian matrix of the
Lotka-Volterra system takes the simple form

!/ * 1/
Jij = xiag, (S32)
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where 7, 7 € §. Examples of eigenvalue spectra of the reduced Jacobian and the reduced interaction

matrix are given in Fig. S1.

Im{w]

—10.0 1= : : : : : : Eh . . . . . . .
-4 -12 -0 -8 —6 —4 -2 0 —14 -12 -10 -08 —06 —04 —02 0.0
Relw] Re[w]

FIG. S1: Panel (a): Example eigenvalue spectrum of the reduced Jacobian. Panel (b): Example spectrum
of the reduced interaction matrix. The red line and circle in panel (b) show the analytical predictions for
the bulk region and outlier eigenvalue in Eqgs. (S97) and (S70) respectively. Parameters are 0 = 1.1, u = 0.9,
I'=-0.5, N = 4000.

B. Reduced Jacobian is not practical for determining stability

One notes that the eigenvalue spectrum of the reduced Jacobian comes arbitrarily close to
the imaginary axis. This is observed for all values of the model parameters in the phase with a
unique fixed point. This is due to the fact that the distribution of fixed-point abundances z] of
the surviving species comes arbitrarily close to zero. (The distribution of abundances of surviving
species is a Gaussian clipped at zero, see e.g. [S1].) For this reason, it is not helpful to study the
spectrum of the full or reduced Jacobian when determining stability — one cannot identify points
in parameter space at which one eigenvalue first touches the imaginary axis, or crosses into the
right half of the complex plane.

C. Spectrum of reduced interaction matrix determines stability

We now argue as to why we need only consider the eigenvalue spectrum of the reduced interaction
matrix g’ when determining stability instead of the reduced Jacobian. We note for the following
discussion that the leading eigenvalues of both the reduced Jacobian and the reduced interaction
matrix are real.

Eq. (S32) indicates that the reduced Jacobian matrix can be written as the product of the
reduced interaction matrix and a diagonal matrix of species abundances. The determinant of J "is
therefore the product of the determinants of these two matrices. The abundances in the diagonal
matrix are strictly positive, and therefore sgn(det D) = 1. Hence, sgn(det .J') = sgn(det o). If
the determinant of the reduced Jacobian changes sign as parameters are varied (indicating loss of
stability), so must therefore that of the reduced interaction matrix and vice versa.

Imagine now we start in a region of parameter space for which the fixed point is stable and
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that we then vary the model parameters. The fixed point becomes unstable at the point where the
leading eigenvalue of the reduced interaction matrix becomes positive. Therefore, we can deduce
the stability of the system by examining the eigenvalue spectrum of the reduced interaction matrix
only. A similar argument to this was given in Ref. [S16]. Crucially (as we will see), the leading
eigenvalue of the reduced interaction matrix is genuinely negative in the stable regime (i.e., not
infinitessimally close to the imaginary axis like that of the reduced Jacobian), and only reaches the
axis at the point of instability.

D. Components of the spectrum of the reduced interaction matrix

As illustrated in Fig. S1 (b), there is an elliptic ‘bulk’ region of the complex plane, to which
the majority of the eigenvalues of the reduced interaction matrix are confined, and a single outlier.
We therefore write the eigenvalue density of the reduced interaction matrix in the form

1
p(w) = pbulk(w) + Fé(w - )\outlier)‘ (833)

S

In the following sections, we deduce both the bulk eigenvalue density and the location of the outlier
eigenvalue. We show that the point in parameter space at which the outlier crosses the imaginary
axis is given by Eq. (S22). We also demonstrate that the bulk spectrum crosses into the right half
of the complex plane at the point described by Eq. (S28).

S3. FINDING THE OUTLIER EIGENVALUE - GENERAL APPROACH

The outlier eigenvalue, Agutiier, Of the reduced interaction matrix by definition must obey
det <)\0utlier]1NS - g/) = 07 (834)

where 1 Ng 18 the identity matrix of size N x Ng.

Suppose we introduce a uniform matrix u with all entries equal to v/Ng. Following Refs.
[S17, S18] and using Sylvester’s determinant identity, one finds

det <]1N$ - ]\?G> =1- NL Z G (1 + Xouttier) = 0, (S35)
S S l]

where we have introduced the resolvent matrix G(1+ Aouttier) = [Aoutlier I N, — (g/ _ g)]_y Thus, to
find the outlier eigenvalue, one has to find the resolvent matrix and solve Eq. (S35) for A\gyutiier- We
stress that all elements of the resolvent are required in Eq. (S35), not only the diagonal entries.
We note that we have the freedom to choose the value of v, as long as it is non-zero and
Aoutlier LN g — (¢’ — u) remains invertible. We exploit this freedom to simplify the calculation of the

resolvent in the next section.
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S4. USING THE GENERATING FUNCTIONAL TO FIND THE RESOLVENT OF THE
REDUCED INTERACTION MATRIX

A. Series expansion for the resolvent of the reduced interaction matrix

To simplify our calculation of the resolvent matrix, we choose v = ¢u in Eq. (S35). Letting
zij = limyo0fa; — plN *1]01-93‘ [see the discussion preceding Eq. (S4) for a definition of 6;], we
see that the disorder-averaged resolvent matrix that we must evaluate to find the outlier can be
expressed as the following series

= Ns_l Z GU( N 1 Z igw Zz]

1,jES 1,jES

= N;UY (w16i0i; + w2z + w3 Yz 4+ | (S36)
- -

where sums over ¢, 7 € S denote a sum over the reduced interaction matrix elements, whereas sums

over ij indicate a sum over all elements of the original interaction matrix.

To find the terms of this series, we now construct the following generating functional

:/D[x,f(]exp ZZ/dt .’fﬁz<t) izgg — 1—xi(t)+2aijxj(t)+hi(t)

X exp | —i / dt 3" Mg (B)laiy — N 1006, (8) | exp (iz / dmxtm(t)). (337)

This generating functional has the same form as in Eq. (S3), with the addition of another source
term containing the auxiliary variables A;;(¢), which we introduce in this step. The dynamics of
x;(t) are still constrained to follow the Lotka-Volterra equations in Eq. (S1), but by functionally
differentiating with respect to A;j(t), we can obtain the terms in the series in Eq. (S36). For

example,

YA ‘
Aij (t) lap—0,0=0

~ifay; — pN TG00, (0) = 7. (538)

We now find for the disorder-averaged resolvent [from which we can find the outlier eigenvalue
via Eq. (S35)]

— n-1 i ~18..0.0. 1+ 4 w3
Glw] = N; Z}E& [w 8;;0i0; + iw=2 Z(» 6)%] oM ]'¢=0,A=o' (S39)
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B. Evaluating the series for the resolvent

Setup and strategy for evaluation of the series

To find the terms of the series in Eq. (S39), we begin by calculating the following average that
appears in the expression for Z[y, Al

A =exp (iZ/dt { Zaijii(t)$j(t):|> exp (i/dt Z Aij (t)[ai; — H/Nwz'(t)@j(t))

= exp —ZZ/dt —:U (t)x;(t)

X exp (;; ST [ / dt & ()a; (1) + )\ij(t)ﬁi(t)Qj(t)] [ / dt &;(t)zi(t) + )\ji(t)ﬂi(t)ﬁj(t)]> .

(540)
One thus finds that the derivatives in Eq. (S39) can be written as, for example,
62Z 1 524
T (1 fa| o
OXikONkj | 0. 2—0 ASNikdAks /[ =0

where we note that there are two kinds of averages here: an average over realisations of the
interaction coefficients represented by =~~~ and an average over the dynamics enforced by the disorder
averaged generating functional denoted by angular brackets (---) [see Eq. (S7)].

The series in Eq. (S39) can therefore be rewritten

1 o000, i /1 A
Glwl =55 2 E&[ o o2 <A5)\w > w3Z<A5)\ 5Akj()>+'”

Let us now begin to construct the series for the resolvent in Eq. (S42). Consider the derivatives of

A:

(S42)

A=0

1 0A
B = 3550
:—lei(t) N/dt:):, o (F) + 03t N/dté? Ay (1)
g 0'2
000,007 [ v (¢t + a-(t)@-(ﬂ% / dt’ez-<t'>9j<t'>xﬁ<t’>],
B2A [6Bult) . .
OO [Mkj(t) ’ B”“B’“J} &
53A . 0By (t)  dBjk(t)
A D5 (O (8) [ B a0 T () +B““B’“B”} 4
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5*A _ | 9Bik(t) 6Bim(t) | Bik(t) 5Blm(t)+ 5. 9Bim(t)
it (DN (O N (D Ami (8) | Ok () 6Amj (1) Sz (£) SMia(2) TR S A (£)

C6Bu(t) . Bl
Foxm() T ()

+ B BiymBmj + Bik Bk Bim Bmj | A, (S43)

where terms of higher order in N~! have been omitted.

The series for the resolvent in Eq. (S42) is a complicated mixture of terms with B;; and its
derivatives appearing in various combinations. Manifestly, all second order or higher order deriva-
tives of B;; evaluate to zero since B;; is linear in A;; and \j;, but some terms with first derivatives
are non-vanishing in the thermodynamic limit.

Our strategy for evaluating the series for the resolvent is as follows. We first consider the terms
involving derivatives of B;; with respect to A\y; and use diagrammatic methods to understand the
structure of the surviving terms in the thermodynamic limit. We use this to show that the series
in Eq. (S42) can be rewritten partly in terms of the resolvent of an ensemble of random matrices
with an elliptic spectrum of the type described in Ref. [S15]. The complexity of the series can
therefore be greatly simplified, see Eq. (S51) below. In particular, the resulting expression for the
series contains averaged products of the objects B;; only.

In a second step, we show that these surviving terms can be written in terms of the fixed-point
quantities in Egs. (S13). We then construct an auxiliary diagrammatic formalism to aid us in
spotting the self-similarity of the series. This ultimately enables us to perform the summation
[see Eq. (S67)] and find a compact expression for the outlier eigenvalue in terms of the fixed point
quantities [see Eq. (S70)].

Terms with derivatives of B;; with respect to A

Now, we are tasked with evaluating the derivatives of A with respect to A;;(t) in Eq. (S43).

2
First consider the following expression that arises from A~! 6/\‘1 ;}\k
g J

1 5Bik>
N¢§j<5/\kj A=0

One notes that this is the same as —¢I'o? x N 3 > 0idij. Consider also the term that arises from

1_ 84
A” 6)\ik5)‘k15/\lj

0B
<25 2 < . 5>\lj>

i,k,l,g

I'o? -1 2

i,k,j

A=0

¢N3 Ty <[5k] ()60, (1) ( / dt3:(¢ )an(t') + T / dt’:%k(t’)xi(t’)>}>

i,k,l,j
+O(N™)

¢Nz —¢L'0*)dp;j (Bik) [x=0 + O(N 1)

1,3,k
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:—FO’2(Z5 X ]\;Z<Bw> ’)\:0 —|—O(N71) (845)
12
5Bkz

We begin to see a pattern emerging: if appears inside the angular brackets, it gives rise to a

Kronecker delta function and a multlphcatlve factor. We note that terms like ﬁ Zi, kol <Bk:l %%J’“ >
do not survive in the thermodynamic limit, since they give rise to too many Kronecker delta

functions, meaning that the factors of 1/N are not cancelled when we perform the sums.

Now let us examine examples of terms with more than one factor of %l’?l. Consider for example
J

the following terms that appear in A_IWW

Vo > <ml<t> W <t>>
(1) 6B

I'o?
. <b > S eekalj 016 = ¢’T204,

ijklm ijklm
ik (t) 6B (1) 22,4
= ¢ T“0o 4
%%I <5Amj<t> W0 > " ¢”,%;n5” N o5 N 0t = o (546)

Both of these contributions give rise to terms that survive in the thermodynamic limit.

We can understand which terms survive more easily with the aid of so-called rainbow diagrams
[S19-S21]. Representing each pair of indices that appear in the same object [e.g. (¢, k) in By| with
a pair of dots and joining indices that are constrained to be the same with lines, the above two
terms in Eq. (S46) can be represented diagrammatically (respectively)

ik kl Im mj
ik kl [m mj

Horizontal lines join indices that are the same by construction. Arcs connect indices that are

constrained to be the same by Kronecker deltas that arise from the derivatives gf“‘((t)) X 0;j0km-

Only diagrams that are of a planar structure (i.e. those without intersecting arcs) survive in the
thermodynamic limit. This is known as t’Hooft’s theorem [S19, S21-S23].

Summation of terms with derivatives of B;; with respect to \;;

Let us consider the sum of all the surviving terms in the series for G(w) = N%ﬁ >_ij Gij(w) that

_5 ik Im ik lm
E +
z T [< 5Akl 6)\WZ]> <5)\m] 6)\kl >:|

contain only derivatives of B;;

1 0B;
-1 _ =3 = ik

A=0
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1 ¢FU 1 ¢2F204 1
- w3 N ”Zk 61] wd N ij;n [52161] + 61]6km5mk;] + - (847)

This sum can be represented diagrammatically as the sum of all so-called planar diagrams

AN ANWA

This is exactly the same series of diagrams [S21, S23] as for the resolvent of the random ma-

trices investigated by Ginibre with elliptic eigenvalue spectra [S24] (once terms that vanish in the

thermodynamic limit have been removed). That is,

1 1 1
g(w) = ] Zk:yzkykz + s %: YikYklYimYmi + (S48)
(2 RIMm

where 7z = 0 and Yy, = %‘2 [Céimdki + 0i10km) and y; are Gaussian random variables. This
resolvent can be shown to obey [S21]

1
T w— po?Tg(w)’

= gw) = 5t [~ VP —dgT? = 2 . (549)

2010 W+ y/w? — 4¢lo?

This same series appears repeatedly in the expression for the full resolvent G(w), which means we
can gather terms with the same power B;;. For example, we can gather terms that are linear in
Bi; [see Eq. (S42) and (S43)] and do not vanish in the thermodynamic limit in the following way

i 1 5 Bu(t) 5Bu(t) 5Byn(t)  6Biua(t) 6Bn(t)
oNw 2; <w i Z * 525 (D) w5 Z ik (5/\lm(t) g (6) g (8) () ) T
7 —16By 5an
Yo L <w$ P L ZBlm o ;

1 6an( ) qr( ) 5an( )5 qr(t)
5 2 Bim < Png() Dys(F) | OAej(t) Ohm <t>) *D*

mngqr

) 1 1 0B;
e St - 2 ()

1 [(6B(t) 0Bun(t) = 0Bik(t) 6By (t)
> <w5 (ml () D) Srnll) At )) 9w )> ]

klmn

ig(w)?
=N S (By). (S50)

ij

Taking into account similar considerations for the higher-order terms in B;;, we obtain following
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series for the full resolvent

ig(w)? w)3 ig(w)?
G(w) = g(w) + gjgf(; Z(Bij>|>\:0 — g(N(; Z<BikBkj>’>\:0 — gjiqu) Z(Bz'kBszlj)!Azo SR
i ik ikl

(951)

An auziliary diagrammatic convention

Now that we have simplified the problem by collecting the terms in the series with the same
multiples of the matrix B, we can proceed to evaluate the series as a whole. To aid us in spotting
the self-similarity of the series, we introduce a second set of diagrammatic conventions.

Each factor of B;; (when the limit A;; — 0 is taken) has two terms [see the first of Egs. (S43)].
When we expand a product of m matrices B and take the ensemble average, we generate 2™ terms,
each one containing a product of m of the summands of B.

Consider for example the second-order term — %) Zl ik (BirBgj). Referencing the definition of
Bji, in Eq. (S43), we obtain the following terms upon evaluating the ensemble average in the limit
>\1Lj — 0

w)3 w)3ot
‘fﬁéiEZQzﬂ%ﬁhm=—g§%¢ §:[<&“W“ﬂ%“f/dﬂﬁ””“”“()w“ﬂ) (”>

ijk ijk

412 <9i(t)9k(t)9j(t) / dt'dt" x; ()2 ()2 (t") 2 (t”)>] (S52)

Let us take the specific example of the first bracket. First, we observe from Eq. (S7) that since the

0,0 [ a0y k<t'>aek<t">wj<t">>
o,0) [ arars o )xk<t'>mk<t”>@<t">>

different species decouple in the thermodynamic limit, the sums factorise

i)2otg(w)?
lim MZ <ei(t)0k(t)9j(t) / dt'dt":ﬁi(t’)xk(t'):%k(t")xj(t")>

t—00,N—00 gf)]\f3 —
ijk

i)20tg(w)?
= lim ()gb]\‘cf]g()/dtdt”z )Z (O (t) it :ck(t”)>z<9j(t)xj(t”)>. (S53)

@ J

Then taking the limit ¢ — oo and assuming that time-translational invariance applies, we find

i gy (os10u(0)8,0) [ atae'as(ean(t)an )y

ijk
4 3 4 3
= lim ‘”J;”) / dt'dt"T(t, )G, ") M(t") = < 9(;‘”) o XM, (S54)

where we have used the final value theorem for Laplace transforms lim;_,o f(¢) = limy, 0 wle[f(£)](u),
and Egs. (S9 — S13) and (S16) to deduce the last equality. The other terms can be evaluated in a

similar manner. We thus obtain

3 4 3
g(w otg(w
_J(V; > (BixBj)lr=o = fb ) [ XM +TxaM? +Tx2q + T xM] . (S55)

ijk
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It is possible to generalise this approach and to represent each term with a diagram. We assign a
node to each summation index. The direction of the arrows between nodes indicates which of the
two summands is chosen from each factor of B;;. Nodes connecting two edges involve two variables
(zg or &) whereas nodes connected only to one edge are associated with a sum over one variable.

With the above example in mind, we construct diagrams with the following rules:

i

Y
I
<
—~~ /E:\ —~
— ~— ~— =
=

A

A 4

elele

A 4

< O: = g(w)x. (S56)

We can therefore write for the terms in Eq. (S52)

LS B - O—O—0+O—0O—0
ijk
+O—0—0+0—0—0

The series in Eq. (S42) can thus be written as
LS Gy = gw) + 2T (S58)
el = a(w) + =
No -~ ij g & )
where T is the sum over all possible such diagrams.

Sum over all possible diagrams

The challenge now is to perform the sum over all possible diagrams. By ‘all possible diagrams’,
we mean diagrams with any number of nodes and any configuration of edge directions. We do this
by categorising each diagram by the directions of its outermost two edges. In this way, the sum
over all diagrams can then be decomposed in a self-similar fashion.

Forgetting for now about the contributions from the outermost nodes, consider the sum over
all possible diagrams with two outer edges of the type <= . We call this sum D; and denote it

diagrammatically as

D= - <

= 4 |+ = O:

+ —0O—0O—0- —O—0O—"0O—
+ +—O—0O—0O- —(O—0O—0O—
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. (S59)

Equally, we define the sums over all possible diagrams with other combinations of outer edge pairs

> <> « = Do, (S60)
- \/> > =D;, (S61)
> > =Dy (S62)

With this in mind, the sum over all diagrams in Eq. (S58) can be rewritten

+O——O+O—{ 0O (S63)

so Eq. (S58) becomes

1 2 2
W Z Gij (w) =g(w) + [Ug(;w)] [XTDIM +T'MDoM +I'x,D3x, + FQMD4XT] . (864)
1,

We now make the crucial observation that the infinite sums D1, Do, D3 and D4 can be expressed

in terms of one another due to the self-similarity of the series. Diagrammatically, we have

+O—0— 0O+ O— F—0O+O+v. (S65)

where the last two terms account for diagrams with one inner node and no inner nodes respectively.

Similarly we have

&-O—0—0:0—0—0
+O—<>—O+O—> _’O+O’ (S66)

Substituting iteratively the expression in Egs. (S65) and (S66) into Eq. (S63) produces the summa-
tion over all diagrams that we desire. Using Eqgs. (S65) and (S66) and the definitions in Eqs. (S59)-
(S62), we find the following set of simultaneous equations for the quantities D1, Dy, D3 and Dy,

Dy = [0°g(w)]* (xD1x + TgDax + DxDsx2 + I?¢Dax2) + xg(w) + %

Dy = [0%g(w)]* (x2D1x + I'xDax + Tx2Dsxz + I?xDax2) + x29(w),

D3 = [0°g(w)]* (xD1g + TqDag + TxDsx + T?qDax) + qg(w),

Dy = [02g(w)]* (x2D1q + T'xD2q + I'x2D3x + I?xDax) + xg(w) + To? (S67)
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C. Final expression for the outlier

We now are left with the relatively simple task of solving the linear Egs. (S67) for D;(w),
Ds(w), D3(w) and Dy(w) to obtain the disorder-averaged resolvent N%s > Gij(w). We find that
the functions D;(w), D2(w), D3(w) and D4(w) are given by

Du(w) = g [1 - o)),
x29(w)
D2le) = D)
q9(w)
P2 = Dy
Dy(w) = D'ng[g(w)] [1-g(w)xo?],
Dlg(w)] =1 = (1+)o*xg(w) + [(x)* — xaq] lg(w)]*To™. (S68)

Substituting these expressions into Eq. (S64), one obtains
XrM(1+T) +To® (Mx2 + x2q — 2xx, M) g(w)] - (S69)

Finally, now that we have the function G[w], the outlier eigenvalue we seek is then given by the
solution Agytier to [c.f. Eq. (S35)]

1

1+ Aoutlier] = —- S70
gl tlier) P (S70)

Solution strategy

The solution Agutlier for a given set (u,02,T') can be obtained efficiently from Eq. (S70) by
adopting the following parametric solution strategy. First, one obtains the fixed-point quantities
X> Xrs X2, ¢ M and ¢ from Egs. (S20) and (S21). Then, one solves the following for g

2.2

Flgl=g+ ngg[g] [, M(1+T)+To® (M?x2 +x2q — 2xx, M) g] = ;ngb (S71)
where
Dlg] =1— (1+D)o*xg + [(x)* — x2q] ¢°T'c™. (S72)

Eq. (S71) is a cubic equation and can be solved readily.

Then one plugs the resulting value of g into the following to obtain the outlier
1 2
)\outlier(g) =-1+ ; + ¢o°Tg. (873)

This last relation results from the expression for g(w) in the first line of Eq. (S49).
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Validity of the solutions

When solving the cubic Eq. (S71) for g, we obtain a maximum of three possible solutions
for the outlier eigenvalue. We thus seek a criterion by which to rule out the two unphysical
solutions. This is accomplished by realising that g is actually the trace of the resolvent matrix in
the thermodynamic limit.

Let us examine again the series in Eq. (S42), but now with the sum over all elements Zij
replaced by a trace (i.e. setting i = j and summing over the single index ). We then see that most
terms in this modified series no longer survive in the thermodynamic limit. The only ones that do
survive are those proportional to d;;. Therefore, the trace of the resolvent is simply given by those

terms consisting only of products of derivatives like gf}z’;, which means that Y, Gii(w) = g(w).

One can show as in Ref. [S9] (the calculation follows along very similar lines and we do not
reproduce it here), that the trace of the resolvent matrix can be related to the response function
of a carefully constructed linear process. By requiring that the power spectrum of fluctuations of
this linear process be positive, we can deduce that the modulus squared of this response function
(which is equivalent to g) must be greater than the reciprocal of the variance of the random matrix
elements. We hence obtain the following constraint on g [analogous to Eq. (S46) of Ref. [S9]]

1

2

—. 4
o < 50s (574)

We note that when g = 1/4/¢02, Aoutlier = —1 + (1 + ')/ ¢c? and the one valid solution for the
outlier is absorbed into the bulk of the eigenvalue spectrum [which is given in Eq. (S97)].

Special case: T' =10

In this special case, Eq. (S70) becomes quadratic, allowing us to obtain a more compact ex-
pression for the outlier. Writing A instead of Agyugiier (to keep the resulting relation compact) we

have
1 o? X M 1
+ . =—, S75
I+X  o(14+N)14+X—02x ou (875)
from which one finds the pleasingly succinct expression
S ? 2 _ 52)2 2 /42
A= 1+2 p+ o+ 4/ (n—02)2+4x, Muo?/9?|, (S76)

where we have used x = ¢ at the fixed point for I' = 0.

D. The diverging abundance transition (M — co) corresponds to the outlier crossing the
imaginary axis

We now proceed to show that when the M — oo transition occurs, the outlier eigenvalue given
in Eq. (S70) hits the imaginary axis.
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Multiplying both sides of the first of Eqs. (S71) by u¢D|g], we obtain the following cubic

Dlgl{p¢Flg] — 1} = [1 — (1 + D)o*xg + Lo* (x* — x2q) ¢°] [1 — nopg]
— p10?g® [xp M(1+T) +To® (M?x2 + x2q — 2xx,. M) g] = 0. (S77)

We now note that if Agutiier = 0 is indeed a solution to Eqgs. (S70), then I'o?¢g? — g + 1 must be
a factor of the left-hand side of Eq. (S77) [one can see this by setting Aoytiier = 0 in Eq. (S73)]. If
this is the case, then we must be able to factorise the cubic in Eq. (S77) to give an expression of
the form

(To?pg? — g+ 1)(1 +bg) =0, (S78)

where b is a coefficient to be found. Equating coefficients in the two cubic expressions in Eqs. (S77)
and (S78), one obtains three expressions for b which must all be equal if Eq. (S78) is a valid
factorisation of Eq. (S77). These expressions are

bi=1-(1+T)o’x — po,
by =To?¢ — (1+I)o?xpu¢ — Lo*x* + uo’x, M,
po®

by = 5 2 M? + x2q — 2xx: M + 6(x* — x29)] - (S79)

If we can show that by = by = bg when M — oo, then we will have proved that Ajuiier = 0 is a
possible solution when M — oco. We can see that this is indeed the case by writing each of the
above expressions by, by and b3 in terms of only functions of A and I"'. We first note from the
relations in Eq. (S21) that when M — oo we have

’U)QA('U}l — Awo)

2
M =
0 KX (w2 T F’IU())Q
ot =
wo + Twyp’
I‘wgwg
Lop = —_—,
¢ (w2 + F’U)())Q
wy = wo + Awy. (S80)

We therefore find that the first two expression for b are equal [recalling Eq. (S19)]

p W1 [wa + T'wo — (1 + Iwo] — Awowz w? — wows
! w1 (wz + T'wy) wi (w2 + Twp)’
b Fw()’wgwl — (1 + F)ngwg — Pwlwg + Awgwl(wl — Awo)
2 pu—

w1 (wg + Twp)?

_ aTwowt = Pugws +wowd —whwy - (S81)
wi (wg + T'wp)?

Noting further the following equalities in the limit M — oo

2 2 2 (w1 — Awp)wy
_ M2 =2 2 0"
Ho X2 wy + Two
wg(wl — A’wo)Q

w1 (’wg + F’u}o)

—Xiquo® = —A

i
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2 _ 2'LUOA(U)1 — Awo)

2 M =
XXp it o (ws + Two)
Awp
ol = —70
Ho 25 wl(wg + Fwo) ’
A?wows (w1 — Awp)
2 owa(w1 0
=— , S82
110" X2q w1 (wa + Tog) (582)
we obtain for the final expression
b3 = A [Aw%(wl — Awg) — wQ(wl — Aw0)2
wowi (wg + Twp)
+ 2wowr (w1 — Awg) — wi — Awgwa(wy — Awy)]
A 2 2
= — = b. S83
wowi (wg + Twp) [wowl wowg] ! (583)
Hence we have shown that by = by = b3. This means that when M — oo, we can write
Dlgl{noFlg] =1} = (To’pg® — g+ {1+ [1 = (1 + T)o*x — uglg} = 0. (S84)

Hence, A = 0 is a solution to this equation when M — co.

Let us examine the alternative solution to Eq. (S84) g = —[1 — (1 + T)o?y — ug]~! = —b; " to
see if it satisfies the criterion in Eq. (S74). One can examine the function r(A) = ¢o?/[b1|? — 1
(which turns out to be independent of I'). In order for the transition M — oo to occur, we must
have that u > 0 (see Fig. 1 in the main text, and also [S8]), and hence that A > 0 [as can be seen
from the second of Egs. (S21) when M — oco. For A > 0, it can be verified that r(A) > 0]. Thus,
one finds that the only valid solution to Eqs. (S84) is the one that corresponds to A = 0.

S5. BULK SPECTRUM: DERIVATION USING THE HERMITIZED RESOLVENT

A. Hermitized resolvent

In Section S4, we evaluated a series expansion of the resolvent matrix so that we could find the
outlier eigenvalue. In the region of the complex plane in which the outlier resides, the resolvent
is analytic, which is why we could use the expansion in Eq. (S39). In order to find the bulk
eigenvalue density, we also need to evaluate the resolvent matrix (in this case its trace, rather than
the sum of all its elements). However, in the region of the complex plane occupied by the bulk
of the eigenvalue spectrum, the resolvent is no longer analytic. So that we can proceed, we must
construct an alternative series expansion for the resolvent that takes this non-analytic nature into
account. We follow the method of Ref. [S25], which involves constructing a ‘hermitized’ resolvent.

We have the following identity

1 *
p(z,y) = ;8G(w,w Nw=141, (S85)

relating the disorder-averaged resolvent

Glw,w™) = <N1¢Tr [wﬂNi—ZD (S86)
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to the eigenvalue density p(z,y). We have again written z;; = (a;; —uN"1)0;0;, as well as w = z+iy

and 0 = (0, + i0,)/2. From this, by the Cauchy-Riemann equations of complex analysis, we see

immediately that the eigenvalue density is non-zero if and only if the resolvent is non-analytic.
We now define the 2N, x 2N, Hermitian matrix

H= 0 z-wing| (S87)
(z— u}]le)T 0

and the Hermitized Green’s function

Honeow) = () (559)

From these definitions we see that we can recover the resolvent we seek via

G, w*) = A}(bTr (420, 2,2%)] | (S89)

where the indices of H refer to its blocks. Hence, if we define

Ho_lE 77]1N$ CUHNS ’
wln, 7l

10
j:[ZTO

[

] , (S90)

then we obtain the following Dyson series for H,

H=Ho+ (HoTHo) + (HoTHoTHo) + -+, (S91)

which then yields the resolvent we desire.

B. The series for the bulk spectrum is that of a Gaussian random matrix
Let us consider for example the first two non-trivial terms in Eq. (S91). We have

o [z e

e R R e A T I ()| B

In order to find the eigenvalue density of the bulk region, we take the trace of these terms. That

[(HoT Hol* =

[HoT HoT Ho* =

1IN

is, we must find quantities such as Ni >, i and Ni > ik zlkz,iz This is notably different to the
S S
calculation of the outlier eigenvalue. In that case, we instead had to sum all elements of the resolvent

and we therefore needed to calculate objects like N%s o j %ij and Nis > ik ZikZkj- We will now show
that the resulting series for the bulk spectrum is far simpler by virtue of this difference. Many
terms that were important for the calculation of the outlier eigenvalue vanish in thermodynamic

limit in the calculation of the bulk spectrum.



525

Let us examine the quantity Ni > ik zikz,zi. This can once again be derived from the generating
S

o™ 8% () )

functional as

1 — 1 1 624
T

E :Zikzki == < 2 >

N¢ — N¢ < AdNS,

Examining the latter quantity we find
Z( = N3 3 Z |:<9¢(t)9k(t)0i(t) / dt’dt”ii(t’)mk(t’)ii(t”)xk(t”)>
+T <0i(t)9k(t)0i(t) / dt’dt”:c,-(t’)ik(t’)ii(t”)xk(t”)>

(S93)

A=0

+F<0i(t)9k(t)0 (t )/dt dt"z;(t) k(t’)xi(t”)yﬁk(t”)>
+1? <0¢(t)0k(t)9i(t)/dt’dt”xz( Ny (t )xz(t")aﬁk(t”)>] =O(NY). (S94)
Immediately, we see that the factor of N2 in the denominator is not cancelled by the factor of

N? that arises from carrying out the sums over i and k. Therefore, this term vanishes in the
thermodynamic limit. However, considering the other term in Eq. (S93) we see that

dBix( 1 2
Z < M: tt > = No ij <9i9k(]’\,> = 02¢. (S95)

In general, only the terms containing solely derivatives of B;; with respect to Ay survive in the

thermodynamic limit. So, in a similar way to Section S4B [see the discussion around Eq. (S47)
in particular|, we find that the series for the trace of the resolvent can be represented by the
same series of diagrams [S21] as for the resolvent of the kinds of random matrices investigated by
Ginibre, which had elliptic eigenvalue spectra [S24] (once terms that vanish in the thermodynamic
limit have been removed).

That is, if we were to represent the series in Eq. (S91) with diagrams, it would take the same
form as that depicted after Eq. (S49), except now the edges would carry two indices: a block index
(from the hermitization) and the usual species index [S21, 523, S25]. We hence arrive at the result
[S15, S21]

2 2
st [ - VI= 4002 %?|  for (#5) + (%) > e?,

d2(14T) ¢02(1 ) for <1fr> +(ﬁ) < o7,

G(wg,wy) =

where w = wy + iw,. Consulting Eq. (S85), the resulting eigenvalue density of the bulk region is

1 14\ ? v \? 2
To7(1-T7)  lor (ﬁ) "‘(ﬁ) > ¢o”,

0 for (1) + () < 602 (S97)

Pbulk(l’, Z/) =

where A = x 4 1y.
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C. Linear instability occurs when the bulk region crosses the imaginary axis

The rightmost point on the edge of the bulk spectrum is given by
Apulk = —1 + (1 +T)/¢o. (S98)

When the bulk of the eigenvalue spectrum first crosses the imaginary axis, we thus have

1
o? = ST (S99)

Comparing with Eq. (S26), we see readily that this corresponds to the point at which the linear
instability of the generalised Lotka-Volterra dynamics occurs.

S6. MODIFIED INTERACTION STATISTICS

As aresult of removing the rows and columns associated with extinct species from the interaction
matrix, the statistics of the reduced interaction matrix elements a ; differ from those of the original
interaction matrix. We can deduce the modified interaction statistics by evaluating the ensemble
averaged derivatives of the generating functional in Eq. (S37) with respect to A;;.

A. Modified mean, variance and second-order correlations

The statistics of the reduced interaction matrix can be obtained from derivatives like those in
Eq. (S43). We denote the modified statistics with a dash. For the modified (scaled) mean, we have

1 0A
= o S0 =on+ xS )
2

g
—¢M+E

Similarly, for the variance and the second-order correlations between transpose pairs, we obtain

A=0

(L4+D)x, M. (S100)

respectively

=T, (S101)
A=0

o1 Z 1 524
T N(0')? A SN

where the approximation is valid for large N. The removal of extinct species gives rise to additional
correlations between elements that only share one index (as was also pointed out by Bunin [S26]),
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despite no such correlations being present in the original ensemble for the full N x N interaction
matrix a;j. These correlations can be shown to greatly affect the location of outlier eigenvalue [S9].
We find the following correlations between elements that share only a single index

a2 () (50
r === Aki — — Afj — —7 Qﬂﬁk

N G Ns Ns

: 2 2 .2 2

=7 [XeM? 4+ 20xx, M + T?qx. ] — (op — /)%,
a2 () (50
C =—— Qi — Ak — 77 Qiejek

N G N N

ot

= 3 (a2 + 20X, M + D2 M?| — (¢ — 1t')?,

_ 4
:—N Zk (azk - ) (akj - ]VS) Hﬂjﬁk
1 1 6%A
N Z}; <A 5)\2k5)\k]>
04

:E[

— (pp— i)

Xr XM +Tx2q+DxaM? + T2, xM] — (¢p — i)?,

(S102)

where the notation (ijk) indicates that none of the set i, j and k can take the same value. We
note that the first coefficient (r') in Eq. (S102) captures correlations between elements in the same
row of the reduced interaction matrix. The second coefficient (¢’) describes in-column correlations.
The coefficient 7/ describes correlations between one elements whose first index equals that of the
second index of another element.

Correlations between elements of the reduced interaction matrix that have no indices in common
vanish in the thermodynamic limit, that is

! 1 1 624 o
(GN)? Z < ) <akl—> 0:00k = — =5 ) < — (op— 1)
5o N, N (¢N) S AN/ o
ot 212722 N2
=g(1+F) M=, — (dp — ')
= 0. (S103)
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FIG. S2: (a) The correlations between elements a;; and ax; [defined in Eq. (S102)] and (b) the scaled mean
of the reduced interaction matrix elements [see Eq. (S100)]. The remaining system parameters are pu = 0.6,
N = 4000 and the results represented by points were averaged over 10 trials.

B. Non-Gaussian statistics

Let us now consider some of the higher-order statistics of the reduced interaction matrix that
are relevant for the calculation of the eigenvalue spectrum. For example, consider the quantity

S = (wlv)Q Z (ait, — ' /Ng)(ar — 1/ /Ng)(ay; — 1/ /Ng)0;0;6.01, (S104)
ikl

This can be related to the quantities that appear in the series for the resolvent in Eq. (S39)

1 1 5A
% = TGNy (%:l) <A6/\ik5)\kl<5)\lj>
ij

A=0
+¢°u® — (W) =3¢ 4+ 3(1)? + (b — 1) [(1)? + 4 + 2¢0°T +2(1')?] (S105)
where we have
—'LZ 1 ra _ (1 +T)o*Txx2aM? + (1 +)Tgx2o?
ONP? e \AdhabhadN ) s 6 e P X
ij
+ X MT?(2¢ + X*To” + X2q0°) + X M (2T + x*0® + x2I'qo?) | (S106)

If the matrix elements z;; (and hence a;j) were Gaussian random variables, then the quantity S3

would vanish. We see that S3 does not vanish, even when the elements of the original interaction

matrix are Gaussian random variables (see Fig. S3 below).
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FIG. S3: Demonstrating that the statistics of the reduced interaction matrix elements are non-Gaussian.
The quantity S3 would be zero if z;; were Gaussian random numbers. The remaining system parameters
are u = 0.6, N = 4000 and the results represented by points were averaged over 10 trials. The results for
I' = 0.4 are too small to be visible.

S7. SMALLER NUMBERS OF SPECIES

The theory that we developed is formally derived in the thermodynamic limit (N — oo). In this
section we verify that the predictions from the theory are also a good approximation for realistic
ecological community sizes. To this end, we have conducted simulations for systems with an initial
pool of N = 50 species, noting that this results on surviving communities of approximately 25

species, depending on parameters.

We generally find that, at such values of IV, there are small quantitative deviations between the
theory and the simulations, as would be expected. Nevertheless, as seen in Fig. S4, when the full
non-Gaussian theory makes predictions that are substantially different to the Gaussian approach,
then the former remains a far better predictor of the leading eigenvalue. Hence, the conclusion
that it is necessary to take into account non-Gaussian interaction statistics to correctly predict the
stability of a complex ecosystem is also true for communities with a smaller numbers of species
than in the figures in the main text.
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FIG. S4: Analog of Fig. 3 of the main text, but markers are now from simulations for N = 50 (leading to
~ 25 surviving species). Solid lines are the predictions of our non-Gaussian theory [Eq. (8) in the main
paper|. We also show the predictions Ao and A\; from the Gaussian theory (see main paper) for comparison
(dashed lines are \g, dot dashed lines are A1). We include T = 0, to demonstrate that there is no anomaly for
this choice. The figure demonstrates that our calculation, which takes into account the full non-Gaussian
statistics of the surviving community, remains a better predictor of the outlier eigenvalue and therefore
stability.

S8. VARIATION OF THE LEADING EIGENVALUE WITH I'

To further verify the formula for the outlier eigenvalue given in Eq. (8) of the main text, we
plot the outlier as a function of I' in Fig. S5. The figure demonstrates good agreement between
the results of computer simulation and our theory prediction.
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FIG. S5: Leading eigenvalue of the reduced interaction matrix as a function of the correlation parameter
" for various values of o, at fixed p = 0.6. Solid lines are from Eq. (8) in the main text, markers are from
computer simulations (N = 400, averaged over 10 trials.)
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S9. THE EFFECT OF VARYING THE INTRINSIC GROWTH RATE/CARRYING
CAPACITY

A. Generalisation of relations for the order parameters at a stable fixed point

1. Fized point relations for order paramaters

We now allow for the possibility of different carrying capacities k; for each species. That is,
Egs. (S1) become

T =x; | ki — o + Z Qi x5 + hl(t) , (8107)
J
where the coefficients k; are drawn independently for each species from a distribution ~(k),
with support contained in the interval [kmin, kmax]- The analysis in Section S1 remains largely
unchanged and we arrive at an alternative version of Eq. (S14)

y k+uM+oyqz  [(k+pM+o\/qz
= 1
* 1 —-To%y © 1—-To2y ’ (S108)
where now we have
! dkvy(k > D
X—l_FUQX/ v(k) . 2y
Vo A
M=—"— [ dkvy(k Dz (Ag —
o [k [ Dz (a2,
o M Ds (B - 2 S
l=————= [ dkvy(k D — 109
T toro [ @) [ Dz (b= (5109)
. _ kt+puM
with A, = NI
2. Solution procedure
We introduce the following shorthand
Ay
() = / derv(k) [ Dz (g — =), (S110)

and use the substitution k = o0,/qAy — uM such that dk = o,/qdAj. We assume that the support

of v(k) ranges from kpin t0 kmax, and define Ay . and Ay, via the relations

min

kmin = U\/aAkmin - NMv
Fmax = 0+/@A, .. — M. (S111)

The objects (w,); can be written in terms of Ay and Ay . (for given o2, and T, as well as
Emin and kpax). This can be seen from

Agax
(e = o/ [ A8 5 (oAl = pd) wn(A), (S112)

min
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and the fact that the relations in Eq. (S111) can be used to express ¢ and M in terms of Ay, .
and Ak

min
kmax - kmin
U\/a = A A Y
kmax - kmin
kminAkmax - kmaXAkmin
Akin = Dmax

pM = (S113)

min

We thus deduce that Ay, and Ay are determined (for given p, 02, T, kmin and kmax) by the
following two equations

o2 (w2)k
((wa)r + T(wo)r)?’
1 _ L _ Anin . AV 1 (wa)
: <kmax kmin) B (kmax Kmin ) <w1>k <w2>k +F<w0>k‘ (8114)

The first of these is analogous to Eq. (S20), and can be obtained directly from Egs. (S109). The
second relation is derived from subtracting the two relations in Eq. (S111) from one another and

O'\/a _ 1 <'U}2>k
M (wi)k (w2)k + T(wo)s’

which in turn is obtained from Egs. (S109).
The values of Ay . and Ay . that satisfy Egs. (S114) can then be substituted into the following
equations to yield the order parameters of interest

(S115)

(wo)j,
X —<’UJO>k + F<w2>k7
kmin _Akmin <w2>k .
M iy, (wahe+ Twghe "
Fmax _Akmax <w2>k‘

M (wi) (wa)p + D{wo)

:@éngQTEwmf’

¢ =(wo)k,
1
Xr —07\@(101 — Apwo)k,
1
X2 = — 0_72q<Ak(’w1 — Akw0)>k (8116)

Only one of the second and third relations is required to find M.

B. Onset of instability

Following similar reasoning to Section S1D 1, we see that the mean abundance diverges (M —
o) when
Ay, (w2)k AV (w2)k
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From this, we deduce that at the transition point, Ay . = Ay, ... This means that the tran-
sition point in the parameter space (u,I', o) is exactly that given by Eq. (S22). The prediction
that the point in parameter space where the mean abundance diverges remains unaffected by the
introduction of heterogeneous carrying capacities is verified in Fig. S6.

However, in the case of the linear instability described in Section S1 D 2, things are not as simple.
Following the reasoning in Section S1D 2, one arrives at the following simultaneous expressions,

which can be solved to yield Ay, .. and Ay and hence all other order parameters) at the point

min (

of instability

(wa)r = (wo)r,
1

1 Ak Ak ) 1 (wa)
_ min max . 8118
a <kmax Emin ( Fmax Emin <w1>k <w2>k + F<w0>k ( )

We note here that in general ¢ = (wg)r # 1/2. This means that the linear instability does not
necessarily occur at o = v/2/(1 +T), as was the case when the carrying capacities were all the
same, i.e. k; = 1.

C. Leading eigenvalues

The expressions for the boundary of the bulk of the eigenvalue spectrum and the outlier eigen-
value in Egs. (S98) and (S70) respectively are given entirely in terms of the order parameters listed
in Egs. (2) and (3) of the main text. Eqgs. (S98) and (S70) do not change when heterogeneous
carrying capacities are introduced. That is, what one has to do in the case where the carrying
capacities are heterogeneous is to calculate the quantities x, xr, x2, M, ¢ and ¢ using Egs. (S116)
and substitute these values into Eq. (S98) for the edge of the bulk spectrum, and into Eq. (S70)
for the outlier [equivalently into Eq. (8) in the main text].

We demonstrate the efficacy of our theory for reproducing the correct leading eigenvalue of the
reduced interaction matrix in the case of heterogeneous carrying capacities in Fig. S6 below. This
shows that, even when carrying capacities vary between species, the central conclusion of the main
text remains valid. That is, one must take into account the non-Gaussian statistics of interactions
between species if one is to properly predict the stability of the system.
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FIG. S6: Panel (a): Leading eigenvalue of the reduced interaction matrix as a function of o2 for fixed
4 = 0.6, but now in a model with heterogeneous carrying capacities (analog of Fig. 4 in the main text).

The red solid line is the modified theory using the values from Eq. (S116) in Eq. (8) of the main text
(i.e., it is the non-Gaussian theory for the model with distributed carrying capacities). The dot dashed
and dashed red lines are found by inserting the values in Eq. (S116) into the expressions for A; and A in
the main text respectively. The black lines are the corresponding lines from the theory for homogeneous
k; = 1 for all species (as in the main text). The data in panel (a) thus demonstrates that one must take
into account non-Gaussian statistics to correctly predict stability also in the presence of varying carrying
capacities. (b) The edge of the bulk of the eigenvalue spectrum when p = —5.0. The red line is for varying

carrying capacities, the black line is for k; = 1 for all species. Notably, the instability point in the model
with distributed carrying capacities is no longer given by o = 1+L2r as in the case of homogeneous k; = 1.
In both panels, I' = 0.2. Simulations are for N = 4000, averaged over 10 trials. We used a dichotomous

distribution of carrying capacities, y(k) = p10k.k;, + D20k ko, With p1 = 0.9, p2 = 0.1, ky = 0.1, ky = 5.0.
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S10. GENERATION OF REDUCED INTERACTION MATRICES WITHOUT
ELIMINATION OF EXTINCT SPECIES IN THE LOTKA-VOLTERRA DYNAMICS

In this section, we discuss the possibility of constructing matrices with the same statistics as the
reduced interaction matrices without running the dynamics of the Lotka—Volterra system and then
eliminating rows and columns of extinct species from the original (full) interaction matrix. In other
words, we construct the ensemble of reduced matrices directly from some prescribed distribution
‘from scratch’ (or ‘bottom up’). We will refer to matrices constructed in this way as ‘imitation’
reduced interaction matrices. By constructing the imitation ensemble, we begin to understand in
more detail the origin of the non-Gaussianity of the reduced interaction matrix and thus why the
universality principle fails to predict its eigenvalues.

In Sec. S1I0 A we first present the general idea of the bottom-up construction. In Sec. SI0B
we calculate the statistics of the true interaction matrices conditioned on given values of the
species abundances at a Lotka—Volterra fixed point. These conditional statistics are used in the
construction of the imitation ensemble. Technical details of the method to produce the imitation
matrices are then given in Sec. S10 C, before we verify in Sec. S10D that the ensemble of imitation
matrices has the same properties as the ensemble of true reduced interaction matrices. We discuss
and interpret these results in Section S10E.

Throughout the section we write a;; for elements of the actual reduced interaction matrix, and
a;; for the elements of an imitation matrix. The size of the imitation matrices is written as N x N.
To construct the ensemble of imitation matrices we use, and develop further, ideas put forward in
Refs. [S27] and [S26].

A. Overall idea

Our approach exploits the fact that an interesting structure becomes apparent in the statistics
of the reduced interaction matrix when the reduced matrix is conditioned on the abundances
of the surviving species. We use this to turn the Lotka-Volterra approach on its head, so to
speak. Instead of drawing a set of interaction coefficients, which then determine the equilibrium
abundances and surviving species in the Lotka—Volterra system, and thus the reduced interaction
matrix, we proceed in reverse. We first draw a set of mock or ‘imitation’ abundances and then a
set of reduced interaction matrix elements conditioned on these abundances.

More specifically, for a fixed set of model parameters p,o,I" of the original Lotka—Volterra
system, we draw a set of imitation abundances {Z;} from the known distribution of abundances
at a Lotka—Volterra fixed point. Then, we draw imitation interaction matrix elements from a
carefully-constructed Gaussian distribution, whose statistics depend on the imitation abundances.
The precise details are described below in Sec. S10C.

B. Conditional statistics of the elements of the true reduced interaction matrix

In this section we calculate the statistics of elements of the true reduced interaction matrices,
conditioned on given values of the species abundances at a Lotka—Volterra fixed point.
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For real valued a1, 81, @2 and (9, we define the following quantities,

1 if o < <Py,
O (x;) = 1<% <Py (S119)
0 otherwise,

and similarly

Doy = 4+ =TS (S120)

0 otherwise.

Thus 91 (z;) indicates if a particular abundance z; is in the range a1, 1], and Y2(z;) if the abun-
dance is in the interval [, F2]. We always assume that 51 > a3 > 0 and S2 > as > 0.

As a first step, we now find the statistics of the interaction coefficients of species whose abun-
dances are conditioned to be within the above-stated ranges. That is, we wish to find for example
1
No1p2

NE (aij]al <x; < ,31,0(2 <Zj < ,32) = Zaijﬁl(xi)ﬁg(xj), (8121)
]

where we have defined
1 -
gbl == N % 191(.%) (8122)

as the fraction of species with a fixed-point abundance in the interval |, 1], and similarly for
¢2. We highlight that N is the number of species in the initial pool, at the point when the
Lotka—Volterra dynamics is started.

A similar calculation to that which was performed in Section S6 yields

1
NE (aij|a1 <x; < 51,(12 < ZT;j < 52) =u-+ W Xg})M(Q)UQ —i—PUZX%?)M(l)] s (8123)
192

where we have

z(B1)
MO = / Dz zx(z),

1
XgJ::__AAAAAA,[e—zUhV/2__e—4a1P/2} (S124)

\/2mqo?

with Dz = e=#"/2 /v/27. Analogous relations apply for the objects ¢2, M @) and ng ). For surviving
species we also have from Eq. (S14),

_1+uM—(1—Fx02)x
Vo |

2(2) = 1+ pM + /qoz
- (1-Txo?)

z(x) =

(S125)
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Let us now examine the limit where 51 = a3 + € and € < 1. That is to say the condition
Y1(x;) = 1 constrains the abundance z; to be in a small interval just above the value x; = .
Expanding in € to linear order we have

b1~ L omtanz2 (L= Tx0?)
V2 o\/q ’

1 a2 (1—Txo?)
MW g ——e #2022 AZ T
(65} #27-(6 O'\/a
_ 2
W 1 Je—stan/21 = Ix0%) (S126)

! R ———2z(y — = ‘e
T \/2mqo? ( o\/q

Analogous expressions can be found from constraining abundance z; to be in the interval [og, an+e],
with e < 1.
Using Egs. (S126) and the expression for z(z) in Eq. (S125) in Eq. (S123) one obtains

1+ uM — (1 —-Txo%)ay 1+ uM — (1 —-Txo%)as
1 .

NE (ajjlz; = a1,z = a0) = 1 — o . —Ta .
(S127)
We write this more in more compact form as
14+ puM — (1 —Txo?)z; 1+ pM — (1 —Txo?)z;
NE (az-j\xi, xj) = U — l'j + H ( X9 )xl — FI‘Z’ + a ( X9 )xj . (8128)

q q
This describes the mean of the element a;; in the true reduced interaction matrix, conditioned on
given abundances x; and x; for species ¢ and j. An expression which is in agreement with this was
obtained in Ref. [S27] for the case I" = 0.

In a similar fashion, we also find

02
Var(aislai, 25) = 7
2
ol
COV(CLij7 aji]a:i, 5[,‘]-) = W’
2
0° TiTL
Cov(aij, aix|wi, zj, vx) = -z Jq 7
2
o TiTp
Cov(aijaaki|xi,$j7xk) = — ﬁ -7q ,
2
o TT)
Cov(azi, agilas, j, xr) = —1° 75 == (S129)

We note that the third of the above expressions agrees with the result obtained for the case I' = 0
in Ref. [S27].

C. Procedure for producing ‘imitation’ reduced interaction matrices

The construction proceeds in two steps.

Step 1:
For a given choice of 02,T, i we draw a set of N imitation equilibrium species abundances {Z:}
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independently from the truncated Gaussian distribution of the true abundances [this distribution
results from Eq. (S14)],

P(x;) = O(;) (i m>2] , (S130)

1 1
- ex
O\ 272 P [ 232

where O(+) is the Heaviside function. We have here written z; for the argument to stress that this
is the distribution of the actual fixed-point abundances of the Lotka—Volterra system. We have
also defined

14+ uM
m=———
1-To2x’
04

The quantities M, ¢, x and ¢ are available analytically for the given values of 02, T, i (see Sec. S1C,
and Refs. [S8, S26]).

While step 1 relies on analytical results for the distribution of fixed-point abundances of the
Lotka—Volterra system, it is important to note that the imitation abundances {Z;} are obtained
without running the Lotka—Volterra dynamics. Instead they are generated synthetically as inde-
pendent samples from the distribution in Eq. (S130).

Step 2:

For a given set of values 1,...,T5 from step 1 we then construct a random matrix of size N x
N, with elements {@;;} drawn from a joint Gaussian distribution P({a;;}|{#;}) with the same
conditional first and second moments as the ones in a (true) reduced interaction matrix for the
given values of the model parameters o2,T", u. We calculated these conditional moments in the
previous section (Sec. S10B).

The use of a Gaussian distribution in step 2 is motivated by the discussion in Appendix A
of Ref. [S27]. The {a;;} of the original interaction matrix are Gaussian random variables. For
a fixed set of abundances {z;}, the {a;;} for surviving species at the fixed point of the GLVEs
are constrained to satisfy the fixed point equations 1 — z; + > i @ity = 0. The distribution of
independent Gaussian random variables that are made to satisfy linear constraints was shown to
be Gaussian, albeit with additional correlations, in Refs. [S27, S28]. It is by virtue of taking into
account that {z;} are also random variables that the resulting distribution of reduced interaction

matrices becomes non-Gaussian.
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To generate the {a;;} in practice, we first draw a set of N? Gaussian i.i.d. random numbers Yij
with mean zero and variance ¢o?/ N. We then construct the elements of the imitation matrices as

follows
- Oliij
aij = N] +Ayzg +Byj’l - Zyzk TrT i~ 2N B Zyjkxkxz
k;éj k#i
¢B o
= i LTy — Ty, 8132
Nq,;yk e 2NAZy’”’“ (5132)
where
1
ibﬂ+r+¢y—]
1
=3 [VI+T-vi-T], (S133)

and where we have defined

_1+uM—(1-Txe®)% . 14+pM—(1-Txo?)i;
i] = — T —Fﬂfi
Hij = | J q q

We note that each element a;; is the sum of products of random variables (for example of the type

(S134)

YjkTkT;), and hence is manifestly non-Gaussian.

The expression in Eq. (S132) is designed so that the {a;;} have the following properties (which

can be verified by direct calculation),

o 14 uM — (1 —Txo?);
E(aij|$iaxj):]€<ﬂ_$j pll = 0= Do)

e . o> 1
Var(a;;|2;,2;) = ~ +0 72

r 1

B F:Eil +uM —(1-— FXO‘Q)i‘j> ’
q q

N2
~ ~ ~ o~ o~ o ¢20'2i'j57k 1
Cov(aij,aik\xi,xj,xk)——NQ q +O ﬁ 5
o 970 Eydy, 1
Cov(aij, arilZi, Zj, T) = =T 7 g + O )
o 202 3% 1
Cov(aj;, ai| i, Tj, T) = —F2¢N02 ka—i-O <N3>’ (S135)

Comparison with Eqs. (5128,5129) demonstrates that the imitation matrices therefore have the
same conditioned statistics as the true reduced interaction matrices in the thermodynamic limit.
(To make the comparison one must keep in mind that the dimension of the reduced matrix is
related to that of the original Lotka—Volterra system via N = ¢N )

D. Properties of the imitation ensemble

We now test to see whether the imitation matrices also have the same unconditioned statistics,
agnostic of the species abundances, as the true reduced interaction matrices. More precisely, we
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compare the properties of imitation reduced matrices (generated using the procedure described in
Sec. S10 C) with the analytical results for the true reduced matrices from Secs. S4 and S6 of this
Supplement.

Fig. S7 shows that the imitation matrix constructed according to Eq. (S132) does indeed produce
the correct mean and correlations of the reduced interaction matrix, given in Egs. (S100) and (S102)
respectively.

Then, in Fig. S8, we verify that the higher-order moment S3 [c.f. Eq. (S104)] of the true
reduced interaction matrix is captured by the imitation matrices. This demonstrates again that
the ensemble of imitation matrices is non-Gaussian (S3 vanishes in a Gaussian ensemble). We also
see in Fig. S8 that the leading eigenvalue, which as we saw is calculated using an infinite series of
higher-order moments (Sec. S4), is also well-replicated by the imitation matrices.
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'=0.1
I'=04

107! 10° 9 10!
o2

I'=038
I'=05
=02
I'=01
=04

107! 10" . 10!

FIG. S7: Verifying that the imitation reduced interaction matrix has the correct ‘global’ statistics (statistics
not conditioned on the abundances). Solid lines are the analytical results for the true reduced matrices,
given by Egs. (5100) and (S102). Markers are from imitation matrices generated using the procedure in
Sec. S10C, in particular Eq. (S132). In all panels, p = 0.6, N = 8000 and results were averaged over 10
trials. Panel (a): The scaled mean p' = NE(@;;). Panel (b): In-row correlations ' = N2Cov(a;j, dix)-
Panel (c): In-column correlations ¢ = N2Cov(a;, @ix). Panel (d): Correlations between elements in the "
row and the i*" column ~ = N 2Cov(ajj, ak;). To be able to use logarithmic vertical axes in panels (b) and
(c) we plot the modulus of ' and ¢’ respectively.
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FIG. S8: Verifying that the imitation reduced interaction matrix has the correct higher-order statistics
and leading eigenvalue. Solid lines are analytical results for the true reduced interaction matrix, given by
Eq. (5105) and Eq. (S73). Markers are from imitation matrices generated as described in Sec. S10C and
Eq. (S132) in particular. In both panels, p = 0.6, N = 8000 and results were averaged over 10 trials. Panel
(a): The third moment S3 [defined in Eq. (S104)]. To be able to use a logarithmic vertical axis we plot |Ss].
Panel (b): The leading eigenvalue.

E. Interpretation and further discussion

The results in Figs. S7 and S8 confirm that the ensemble of true reduced interaction matrices can
be generated ‘bottom-up’, without going through the elimination procedure in the Lotka—Volterra
dynamics. We have verified that as well as reproducing the first and second moments of the true
reduced interaction matrices, the imitation matrices also capture higher-order quantities such as
S3 in Eq. (S104), as well as the leading eigenvalue, and thus stability.

Based on these observations, and the manifest non-Gaussianity of the reduced interaction ma-
trices, we can begin to understand why the universality principle does not apply here. There is a
finer structure to the interaction statistics, that becomes apparent when we condition on the abun-
dances of surviving species. It is this structure that gives rise to the higher-order moments in the
ensemble of reduced matrices. Ignoring these moments and making a simple Gaussian assumption
one obtains an incorrect result for the leading eigenvalue [given in Eq. (5) of the main text]. This

is why we say that the universality principle fails in the ensemble of reduced interaction matrices.

[S1] T. Galla, Dynamically evolved community size and stability of random lotka-volterra ecosystems, EPL
(Europhysics Letters) 123, 48004 (2018).

[S2] O. Malcai, O. Biham, P. Richmond, and S. Solomon, Theoretical analysis and simulations of the
generalized lotka-volterra model, Phys. Rev. E 66, 031102 (2002).

[S3] L. Brenig, Complete factorisation and analytic solutions of generalized lotka-volterra equations,
Physics Letters A 133, 378 (1988).

[S4] C. De Dominicis, Dynamics as a substitute for replicas in systems with quenched random impurities,
Physical Review B 18, 4913 (1978).



542

H. Sompolinsky and A. Zippelius, Dynamic theory of the spin-glass phase, Phys. Rev. Lett. 47, 359
(1981).

T. R. Kirkpatrick and D. Thirumalai, p-spin-interaction spin-glass models: Connections with the
structural glass problem, Phys. Rev. B 36, 5388 (1987).

M. Opper and S. Diederich, Phase transition and 1/f noise in a game dynamical model, Physical
Review Letters 69, 1616 (1992).

T. Galla, Dynamically evolved community size and stability of random Lotka-Volterra ecosystems,
EPL (Europhysics Letters) 123, 48004 (2018).

J. W. Baron, T. J. Jewell, C. Ryder, and T. Galla, Eigenvalues of random matrices with generalised
correlations: a path integral approach, Physical Review Letters 128, 120601 (2022).

M. Mézard, G. Parisi, and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica
Method and Its Applications, Vol. 9 (World Scientific Publishing Company, London, 1987).

J. W. Baron and T. Galla, Dispersal-induced instability in complex ecosystems, Nature Communica-
tions 11, 1 (2020).

S. Allesina and S. Tang, Stability criteria for complex ecosystems, Nature 483, 205 (2012).

F. Roy, G. Biroli, G. Bunin, and C. Cammarota, Numerical implementation of dynamical mean field
theory for disordered systems: application to the lotka-volterra model of ecosystems, Journal of Physics
A: Mathematical and Theoretical (2019).

R. M. May, Will a large complex system be stable?, Nature 238, 413 (1972).

H.-J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein, Spectrum of large random asymmetric
matrices, Physical Review Letters 60, 1895 (1988).

L. Stone, The feasibility and stability of large complex biological networks: a random matrix approach,
Scientific Reports 8, 1 (2018).

S. O’Rourke, D. Renfrew, et al., Low rank perturbations of large elliptic random matrices, Electronic
Journal of Probability 19 (2014).

F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank per-
turbations of large random matrices, Advances in Mathematics 227, 494 (2011).

E. Brézin and A. Zee, Correlation functions in disordered systems, Physical Review E 49, 2588 (1994).
A. Kuczala and T. O. Sharpee, Eigenvalue spectra of large correlated random matrices, Physical
Review E 94, 050101 (2016).

R. A. Janik, M. A. Nowak, G. Papp, and 1. Zahed, Non-hermitian random matrix models, Nuclear
Physics B 501, 603 (1997).

G. ’t Hooft, A planar diagram theory for strong interactions, Nuclear Physics B 72, 461 (1974).

A. Kuczala, Dynamics and Information Processing in Recurrent Networks (University of California,
San Diego, 2019).

J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, Journal of Mathematical
Physics 6, 440 (1965), https://doi.org/10.1063/1.1704292.

J. Feinberg and A. Zee, Non-hermitian random matrix theory: Method of hermitian reduction, Nuclear
Physics B 504, 579 (1997).

G. Bunin, arXiv preprint arXiv:1607.04734 (2016).

M. Barbier, C. de Mazancourt, M. Loreau, and G. Bunin, Fingerprints of high-dimensional coexistence
in complex ecosystems, Phys. Rev. X 11, 011009 (2021).

F. Vrins, Sampling the multivariate standard normal distribution under a weighted sum constraint,
Risks 6, 64 (2018).



