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The eigenvalue spectrum of a random matrix often only depends on the first and second moments
of its elements, but not on the specific distribution from which they are drawn. The validity
of this universality principle is often assumed without proof in applications. In this letter, we
offer a pertinent counterexample in the context of the generalised Lotka–Volterra equations. Using
dynamic mean-field theory, we derive the statistics of the interactions between species in an evolved
ecological community. We then show that the full statistics of these interactions, beyond those
of a Gaussian ensemble, are required to correctly predict the eigenvalue spectrum and therefore
stability. Consequently, the universality principle fails in this system. We thus show that the
eigenvalue spectra of random matrices can be used to deduce the stability of ‘feasible’ ecological
communities, but only if the emergent non-Gaussian statistics of the interactions between species
are taken into account.

The theory of disordered systems enables one to de-
duce the behaviour of collections of many interacting con-
stituents, whose interactions are assumed to be random,
but fixed in time [1]. A related discipline, random matrix
theory (RMT), is concerned with the eigenvalue spectra
of matrices with entries drawn from a joint probability
distribution. Both fields have found numerous applica-
tions in physics [2, 3] (the study of spin glasses in partic-
ular [1]), and in other disciplines such as neural networks
[4–8], economics [9, 10] and theoretical ecology [11–17].

It is frequently assumed that the distribution of the
randomness in RMT or disordered systems is Gaussian,
possibly with correlations between different interaction
coefficients or matrix entries. Reasons cited for this
assumption include analytical convenience, maximum-
entropy arguments and the observation that higher-order
moments often do not contribute to the results of calcu-
lations [1, 18, 19].

In random matrix theory, this latter observation is re-
ferred to as the principle of universality [20–22]. The
principle states that results obtained for the spectra of
Gaussian random matrices frequently also apply to ma-
trix ensembles with non-Gaussian distributions. The
conditions for universality to apply are usually mild
(higher-order moments of the distribution must fall off
sufficiently quickly with the matrix size [20, 21]), and it
is often tacitly assumed that these conditions will hold.

In this letter, we offer a pertinent counterexample to
the universality principle in RMT. We focus on the eco-
logical community resulting from the dynamics of the
generalised Lotka–Volterra equations with random inter-
action coefficients. The stability of this community is
governed by the interactions between species that sur-
vive in the long run [23, 24]. This is a sub-matrix of
the original interactions, which we will refer to as the
‘reduced interaction matrix’.
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Firstly, using dynamic mean-field theory [25], we ob-
tain the statistics of the elements in the reduced inter-
action matrix. These turn out to be non-Gaussian (even
when the original interaction matrix is Gaussian). Sec-
ondly, we analytically calculate the leading eigenvalue
of this non-Gaussian ensemble of random matrices. We
show that this eigenvalue is different from the one that
we would obtain from a Gaussian ensemble with the same
first and second moments as in the reduced interaction
matrix. This demonstrates that the principle of univer-
sality fails, and it indicates that the Gaussian assumption
should not be made lightly.
Our findings have relevance to the random matrix ap-

proach to ecosystem stability, introduced by Robert May
[11, 12]. This approach assumes a random interaction
structure between species in the community. One line
of criticism of May’s model is the observation that such
interactions do not necessarily describe a feasible equilib-
rium (that is, an equilibrium for which all species abun-
dances are positive) [23, 26–29]. The community of sur-
viving species in the generalised Lotka–Volterra model on
the other hand is feasible by construction, and we derive
the statistics of the emergent random matrix ensemble
that describes this community [24, 30–32]. From this en-
semble, we then recover the stability criteria that have
previously been derived from the dynamic Lotka-Volterra
model [15, 33]. We thus show that one can construct a
random matrix ensemble (in the sense of May) that cor-
rectly reflects the stability of a feasible community of
coexistent species. This ensemble is non-Gaussian and
quite intricate. In May’s words, our work contributes to
‘elucidating the devious strategies of nature which make
for stability in enduring natural systems’ [34].
We start from the generalised Lotka-Volterra equations

(GLVEs) [15, 33]

ẋi = xi


1− xi +

∑

ij

aijxj


 , (1)

where the xi ≥ 0 describe the abundances of species i =
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1, . . . , N . The interaction matrix elements in Eq. (1) aij
are quenched random variables. We refer to these as the
‘original interaction matrix’ elements. We assume that
the mean of each matrix element is aij = µ/N (we use
an overbar to denote averages over the ensemble of inter-
action matrices), and that they have variance Var(aij) =
σ2/N . We also allow for correlations between diagonally
opposed matrix elements, Corr(aij , aji) = Γ, (−1 ≤ Γ ≤
1) where Corr(a, b) = (ab− ab)/

√
Var(a)Var(b).

The scaling with N of the moments of aij follows the
standard conventions in disordered systems [1] and guar-
antees a well-defined thermodynamic limit N → ∞. All
our results are independent of the higher moments of aij
as long as these moments decay sufficiently quickly with
N . Further details can be found in Sec. S1 of the Sup-
plemental Material (SM).

FIG. 1. Stability diagram [15, 33] of the GLVE system in the
plane spanned by µ and σ2 for fixed values of the correlation
parameter Γ. Solid lines indicate the M → ∞ transition,
dashed horizontal lines the linear instability. These lines were
produced using Eqs. (S22) and (S28) in the SM respectively.
Vertical lines mark the values of µ used in the two panels of
Fig. 3. The system has a unique stable fixed point below the
dashed lines and to the left of the solid lines.

Previous analyses of this system [15, 33] in the ther-
modynamic limit have shown that there is a range of pa-
rameter combinations µ, σ2 and Γ for which the dynamics
reaches the a unique stable fixed point, independently of
the starting conditions. This is the case in the region
to the left and below the instability lines in the phase
diagram in Fig. 1.

When a fixed-point solution is reached, not all species
survive, i.e. there are some species for which x⋆i > 0 and
others with x⋆i = 0 (we use an asterisk to denote the fixed
point). Using dynamic mean-field theory (DMFT), one
can deduce these statistics of the species abundances at
the fixed point.

From the DMFT analysis, one can also find the combi-
nations of system parameters at which the system is no
longer able to support a unique stable fixed point. There
are two types of transition: (1) the average species abun-

dance can diverge [i.e., M → ∞], or (2) the fixed-point
solution can become linearly unstable to perturbations.
Closed-form expressions for the critical sets of parame-
ters (σ, Γ and µ) at which each of these transitions occur
were derived in [15, 33]. A selection of phase lines for
different values of the correlation parameter Γ are shown
in Fig. 1.

FIG. 2. The eigenvalues of the reduced interaction matrix.
Results from a computer simulation of the GLVE are shown
as markers. The solid red curve and the hollow circle show the
theoretical predictions for the bulk region and outlier eigen-
value in Eqs. (4) and Eqs. (S71)–(S73) of the SM respectively.
Two naive predictions for the outlier that do not take the full
statistics of the reduced interaction matrix into account are
shown as a yellow triangle (λ0 in the text) and an orange
square (λ1 in the text). System parameters are σ = 1.1,
µ = 0.9, Γ = −0.5, simulation data is from a single realisa-
tion with N = 10000.

We now examine an alternative approach to analysing
the stability of the GLVEs in Eq. (1). Namely, we
consider the reduced interaction matrix (the interac-
tion matrix between the species in the surviving sub-
community). More precisely, this is defined by

a′ij = aij − δij , (2)

where i, j ∈ S (with S the set of surviving species), and
where the shift in the diagonal elements reflects the −xi
term inside the brackets of Eq. (1). It can be shown that
a fixed point of the GLVEs is stable if and only if all of
the eigenvalues of the reduced interaction matrix have
negative real parts [16, 23, 24] (see also Sec. S2 in the
SM).
We note that the statistics of the reduced interaction

matrix elements are determined by the extinction dynam-
ics in the GLVE system, and are consequently vastly dif-
ferent to those of the original interaction matrix [31, 35].
For instance, they are non-Gaussian (even when the aij
are Gaussian), and there are correlations between ele-
ments sharing only one index (see SM Sec. S6). This
makes the calculation of the eigenvalue spectrum of the
reduced interaction matrix a non-trivial task.
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As is illustrated in Fig. 2, the spectrum of the reduced
interaction matrix consists of a bulk set of eigenvalues
and a single outlier. Writing zij = aij − µN−1 (where
once again i, j ∈ S), both the outlier eigenvalue λoutlier
and the bulk spectral density ρbulk(λ) can be obtained

from the resolvent matrix G =
[
ω11− z

]−1
. The bulk

density is calculated from the trace of G via well-known
relations [36]. The outlier eigenvalue in turn fulfils [37–
39]

G (1 + λoutlier) =
1

µϕ
, (3)

where G (ω) ≡ (Nϕ)−1
∑

i,j∈S Gij(ω), and where ϕ is the
fraction of surviving species at the fixed point.

We first briefly discuss the bulk spectrum, for which
the results do not run counter to the universality princi-
ple. We use a series expansion for a Hermitized version
of the resolvent of the reduced interaction matrix. This
standard approach accounts for the non-analytic nature
of the resolvent in the bulk region [40, 41].

We find that the resulting series for the trace of the
resolvent matrix is identical to that of a Gaussian ran-
dom matrix in the limit N → ∞. That is, we show
that the higher-order statistics of the reduced interac-
tion matrix do not contribute to this series and, there-
fore, that the universality principle holds for the bulk
region. The only statistics of the reduced interaction
matrix that contribute are (σ′)2 ≡ NSVar(a

′
ij) = ϕσ2

and Γ′ ≡ Corr(a′ij , a
′
ji) = Γ where NS is the number of

surviving species (we calculate these statistics in Sec. S6
of the SM). One obtains the familiar elliptic law

ρbulk(λ) =

{
1

π(σ′)2[1−(Γ′)2] if (1+x)2

(1+Γ′)2 + y2

(1−Γ′)2 < (σ′)2,

0 otherwise,

(4)

where λ = x+ iy. We can show (SM Sec. S5C) that the
bulk of the eigenvalue spectrum crossing the imaginary
axis corresponds to the linear instability of the GLVEs,
represented by the dashed horizontal lines in Fig. 1 . This
is verified in Fig. 3(a).

We now move on to the outlier eigenvalue, which is
a far less trivial matter. We first discuss two candidate
expressions for the outlier eigenvalue based upon calcu-
lations for Gaussian random matrix ensembles. We show
that neither of these expressions are accurate, and that
the universality principle fails to predict the outlier eigen-
value. We subsequently derive an accurate expression for
the outlier, which we show correctly predicts stability.

Noting previous work [13, 22, 37, 42], one might per-

haps expect that µ′ = NSa
′
ij (i ̸= j), together with

(σ′)2 and Γ′ would be sufficient to predict the out-
lier eigenvalue of the reduced interaction matrix. Us-
ing an established formula for the outlier eigenvalues
of Gaussian random matrices [37, 42], one then obtains
λ0 = −1 + µ′ + Γ′σ′2/µ′.

If we also include the effects of correlations between
elements sharing only one index γ′ = N2Corr(a′ij , a

′
ki)

(where k ̸= i), we arrive at (using results from our pre-
vious work [39])

λ1 = −1 + µ′ +
µ′

2

(
1 +

Γ′

γ′

)[√
1 +

4γ′σ′2

(µ′)2
− 1

]
. (5)

The approach leading to Eq. (5) takes into account all
possible correlations for a Gaussian random matrix with
statistical symmetry between different species. We note
that correlations between elements in the same row or
column also exist in the reduced interaction matrix (see
SM Sec. S6A), but these do not affect the location of the
outlier [39].
If the universality principle were to apply to the re-

duced interaction matrix, then the Gaussian predic-
tion λ1 and the true outlier eigenvalue would coincide,
whether or not the elements of the reduced interaction
matrix were also Gaussian distributed. As can be seen in
Fig. 4, λ1 is a better approximation than λ0, but neither
expression correctly predicts the outlier.
We now take into account the full statistics of the ma-

trix elements a′ij , as we did when calculating the bulk
eigenvalue spectrum, and deduce the correct expression
for the outlier eigenvalue. In the region of the complex
plane outside the bulk (where the outlier resides), the re-
solvent can be expanded as a series in 1/ω [Eq. (S36) in
the SM]. We evaluate each term in this series in terms of
the statistics of species abundances, which are available
to us via DMFT. This is accomplished via a generating-
functional approach (SM Sec. S4).
Using diagrammatic techniques to recognise the self-

similarity of the resulting series, we arrive at a compact
formula for the resolvent [SM Eq. (S69)]. Using Eq. (3),
we then obtain an implicit set of equations for the out-
lier eigenvalue in terms of the statistics of the surviving
species abundances [see Eqs. (S71)–(S73) in the SM]. We
emphasise that in finding our final expression for the out-
lier, no approximations have been made other than as-
suming the thermodynamic limit. The simulation data in
Figs. 3 and 4 verifies that the expression in Eqs. (S71)–
(S73) accurately predicts the outlier eigenvalue.
We also demonstrate analytically (see SM Sec. S4D)

that this prediction for the outlier eigenvalue correctly
predicts instability of the fixed point of the GLVE sys-
tem. That is, λoutlier crosses the imaginary axis precisely
at locations in parameter space where the M → ∞ tran-
sition occurs in the GLVEs. This is also verified in Figs.
3 and 4.
We thus conclude that stability cannot be predicted

from the reduced interaction matrix using Gaussian ran-
dom matrix results, even if all correlations are accounted
for. This indicates that the extinction dynamics leads to
some more intricate structure to the interactions in the
surviving community.
Advancing ideas in Refs. [24, 31], we show in the

SM (Sec. S10) how one can generate the ensemble of
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FIG. 3. Panel (a): Right edge of the bulk of the eigenvalue spectrum of the reduced interaction matrix versus σ2 for different
values of the system parameter Γ and fixed µ = −0.5. Markers are the result of averaging the results of 10 simulations of the
GLVE with N = 4000. The dashed coloured lines are given by λedge = −1 + σ

√
ϕ(1 + Γ), and the vertical dot-dashed lines are

the points where the linear instability occurs in the GLVE (see the dashed lines in Fig. 1). Panel (b): Outlier eigenvalue of the
reduced interaction matrix versus σ2 at fixed µ = 0.6 and for the same values of Γ as in panel (a). Markers are the result of
averaging the results of 10 simulations with N = 4000. The solid lines are the analytical result in Eqs. (S71)–(S73) of the SM,
and the vertical dot-dashed lines are the points where M → ∞ in the GLVE (see the solid lines in Fig. 1).

reduced interaction matrices ‘from scratch’ (i.e. with-
out running the Lotka–Volterra dynamics and eliminat-
ing extinct species). This is achieved by first drawing
a set of mock abundances from the known distribution
of GLVE fixed-point abundances [15, 31]. Subsequently,
one then draws interaction matrices from a carefully con-
structed distribution, which is dependent on the mock
abundances. We verify in the SM that this bottom-
up construction leads to non-Gaussian matrices with the
same statistical properties and leading eigenvalue as the
ensemble of true reduced interaction matrices.

Having constructed the reduced interaction matrix en-
semble in this way, we can thus see more clearly why
universality fails to capture stability. The ensemble is
manifestly non-Gaussian with complex interdependencies
between matrix elements. By making a simple Gaussian
assumption and ignoring the higher-order moments, one
does not correctly take into account this intricate under-
lying structure.

Finally, we perform some additional tests of our results
to demonstrate their robustness. For example, realistic
ecological communities might be composed of only a rel-
atively small number of species. We have verified that
our expression for the outlier in Eqs. (S71)–(S73) of the
SM is also a better predictor of stability than the more
naive theories when N = 50, leading to communities of
about surviving 25 species (Fig. S4 in the SM). It has
also been pointed out that heterogeneity of carrying ca-
pacities across species can significantly affect ecological
equilibria [31, 43]. We show in Sec. S9 of the SM that
our conclusions continue to hold in such situations.

To conclude, we have deduced the stability of the gen-
eralised Lotka-Volterra system by calculating the eigen-
value spectrum of the interaction matrix of the surviving
species. We have shown that results that are derived for

Gaussian random matrices, which are often assumed also
to apply to non-Gaussian ensembles, fail in this case. In-
stead, higher-order statistics of the reduced interaction
matrix must be taken into account. We have therefore
found a non-contrived class of random matrices for which
the universality principle of RMT is not applicable. This
demonstrates that there are limitations to results in RMT
that are derived making an assumption of Gaussian in-
teractions. Universality should therefore not be invoked

FIG. 4. Outlier eigenvalue of the reduced interaction matrix
as a function of σ2, at fixed µ = 0.6,Γ = −0.2. Markers indi-
cate the results of computer simulations (N = 1000, averaged
over 10 trials). The solid line is from Eqs. (S71)–(S73) of
the SM, whereas the dashed line and dot-dashed lines are the
two naive predictions λ0 and λ1 (respectively) given in the
text. The vertical dot-dashed line marks the point at which
M → ∞ in the GVLE (see the solid lines in Fig. 1).
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without careful consideration.

Our results also have immediate relevance for the field
of theoretical ecology. In the widely used approach pio-
neered by Robert May [11, 12], one supposes that the Ja-
cobian governing small deviations of species abundances
about a fixed point can be represented by a random ma-
trix. May does not say what the dynamics are that lead
to this Jacobian. One particular objection to this ap-
proach is hence that the statistics of May’s random ma-
trices do not necessarily correspond to ‘feasible’ equilibria
[22, 23, 26, 28].

The fixed point of the GLVEs is feasible by construc-
tion. Therefore, our work shows that the stability of a
feasible equilibrium in a complex ecosystem can be found
by studying the eigenvalues of a random interaction ma-
trix. Feasibility is reflected in the higher-order statistics

of the interactions between species. Crucially, we find
that these intricate statistics cannot be ignored if one is
to correctly predict stability.
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S1. DYNAMIC MEAN-FIELD THEORY AND PHASE TRANSITIONS

For completeness, we show in this section how dynamic mean field theory can be used to

deduce which sets of interaction statistics of the original Lotka–Volterra community can give rise to

stability. This has previously been described in [S1], see in particular the Supplementary Material

of this earlier work. In the course of this calculation, we introduce the generating functional

formalism and some quantities of interest that will be necessary for quantifying the statistics of

the reduced interaction matrix later.

A. Effective process

We begin with the generalised Lotka-Volterra equations [S2, S3]

ẋi = xi


1− xi +

∑

j

aijxj + hi(t)


 , (S1)

where hi(t) is an external field, which is included for the purposes of the calculation, but which is

later set to zero (the fields are therefore not a part of the model as such). The original interaction
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matrix elements have the following statistics

aij = µ/N,

(aij − µ/N)2 = σ2/N,

(aij − µ/N)(aji − µ/N) = Γσ2/N. (S2)

The corresponding generating functional [S4], from which the complete statistics of the process can

be derived, is

Z0[ψ] =

∫
D[x, x̂] exp


i
∑

i

∫
dt


x̂i(t)


 ẋi(t)
xi(t)

−


1− xi(t) +

∑

j

aijxj(t) + hi(t)










× exp

(
i
∑

i

∫
dtxi(t)ψi(t)

)
. (S3)

For later convenience, we define θi(t) = Θ(xi), where Θ(·) is the Heaviside function. We also write

θi = limt→∞ θi(t) (in the phase where the system reaches a fixed point). Further, we introduce ϕ(t)

as the fraction of species that are survive until time t and NS the eventual number of surviving

species respectively,

ϕ(t) =
1

N

∑

i

θi(t),

NS = lim
t→∞

∑

i

θi(t). (S4)

We write ϕ = NS/N for the asymptotic fraction of surviving species in the fixed point phase.

Now, following for example Refs. [S5–S7] (especially Ref. [S8] in the context of the current

problem), we perform a dynamic mean-field analysis. First one finds the disorder-averaged gener-

ating functional Z0[ψ], keeping only leading order terms in N−1 in the exponent. We note that in

taking the disorder average, we do not require aij to be Gaussian random variables. Merely, we

require that the higher moments of aij decay sufficiently quickly with N−1 so that we only need

to include up to quartic order terms in xi and x̂i [S9, S10].

Then, by defining appropriate ‘order parameters’ and performing a saddle-point approximation,

which is valid in the thermodynamic limit N → ∞, we find the following approximate expression

for the generating functional

Z0[ψ] ≈
N∏

i=1

[∫
D[xi, x̂i] exp

(
i

∫
dt ψi(t)xi(t)

)

× exp

(
i

∫
dt x̂i(t)

[
ẋi(t)

xi(t)
− 1 + xi(t)− µM(t) + Γσ2

∫
dt′G(t, t′)x(t′)− hi(t)

])

× exp

(
−σ

2

2

∫
dt dt′C(t, t′)x̂i(t)x̂i(t′)

)]
, (S5)

where we note that each species is now statistically equivalent. The quantities M(t), G(t, t′) and

C(t, t′) are defined self-consistently via

M(t) ≡ ⟨xi(t)⟩,
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R(t, t′) ≡
〈
δxi(t)

δhi(t′)

〉
= −i

〈
xi(t)x̂i(t

′)
〉
,

C(t, t′) ≡ ⟨ηi(t)ηi(t′)⟩ = ⟨xi(t)xi(t′)⟩, (S6)

where the angular brackets represent averages with respect to the disorder-averaged generating

functional

⟨· · · ⟩ =
∫
D[x, x̂] [· · · ] exp


i
∑

i

∫
dt


x̂i(t)


 ẋi(t)
xi(t)

−


1− xi(t) +

∑

j

aijxj(t)










≈ 1

Ω

∫
D[x, x̂] [· · · ] exp

(
−σ

2

2

∫
dt dt′

∑

i

C(t, t′)x̂i(t)x̂i(t′)

)

× exp

(
i

∫
dt
∑

i

x̂i(t)

[
ẋi(t)

xi(t)
− 1 + xi(t)− µM(t) + Γσ2

∫
dt′G(t, t′)x(t′)

])
, (S7)

where Ω is a normalisation constant. We also find that for large N

ϕ(t) = ⟨θi(t)⟩,
NS = N lim

t→∞
ϕ(t). (S8)

It is in performing the saddle-point calculation that the necessity for the scaling with N of the

statistics in Eq. (S2) becomes apparent. If we had chosen instead, for example, aij = µ, then the

term µM in Eq. (S5) would instead be NµM , which is of the order N . This would mean that this

term would dominate the argument of the exponential in the limit N → ∞.

However, once the saddle-point calculations have been performed, and using the observation

that predictions formally derived in the limit N → ∞ also hold to a good approximation for finite

N (see Sec. S7), one can map our choice of moments to that usually made in theoretical ecology

as was done for example in Refs. [S11, S12]. This is described briefly in Sec. S1B below.

We thus see that in the thermodynamic limit, the disorder-averaged generating functional can

be written as the product of N identical generating functionals. From the form of these factors one

can deduce that each species can be approximated as obeying a self-consistent stochastic process

of the form

ẋi = xi

[
1− xi + µM(t) + Γσ2

∫
dt′R(t, t′)xi(t′) + σηi(t)

]
, ⟨ηi(t)ηi(t′)⟩ = C(t, t′), (S9)

where we use the fact that the angular brackets can also be thought of as averages over realisations

of the coloured noise ηi(t). Similar effective single-species dynamics have also been obtained using

the cavity approach [S13]. We note that the response function R(t, t′) and the average abundance

M(t) are also to be obtained self-consistently as averages over realisations of the process in Eq. (S9).

We note further that the site index i serves no further purpose in Eq. (S9), we will therefore drop

this index from now on.

For the sake of later analysis, we also define the following response functions

T (t, t′) ≡
〈
δθ(t)

δh(t′)

〉
= −i⟨θi(t)x̂i(t′)⟩,

T2(t, t
′) ≡

〈
δ2θ(t)

δh(t′)δh(t′′)

〉
= −⟨θ(t)x̂(t′)x̂(t′′)⟩. (S10)
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B. Comment on scaling of moments of the interaction matrix elements with N

For the statistics of the original interaction matrix elements, we use a mean µ/N and a variance

σ2/N [see Eq. (S2)]. Many studies in theoretical ecology (see the discussion below for examples)

would use µE and σ2E without the scaling with N (the subscript stands for ‘ecology’). There is

therefore a direct mapping between the two parameterisations, µ = NµE and σ2 = Nσ2E . The

parameter Γ does not undergo any change, Γ = ΓE [S11].

In this way, any combination of N,µE and σ2E can be mapped onto a set of parameters with the

physics scaling (µ = NµE and σ2 = Nσ2E). Assuming that the theoretical predictions, formally

derived in the limit N → ∞, are valid as an approximation also for finite N (we confirm this in

Sec. S7), the phase diagram obtained in terms of the physics parameters (Fig. 1 in the main paper),

can then be used to decide if the system is stable or not.

For example, for a given µ = NµE , the generating-functional calculation will generally indicate

that the system becomes unstable at a value of σ2 = σ2c , with σ
2
c some ‘critical’ value, which will

in general depend on Γ. Assuming that the results apply (as an approximation) to systems with

finite N one can then conclude that the system becomes unstable when Nσ2E = σ2c .

Similar principles are indeed used by May [S14], and Allesina and Tang [S12]. Allesina and

Tang for example make use of earlier results by Sommers et al in the physics literature [S15] on the

spectra of random matrices. These results are also derived in the thermodynamic limit and using

a scaling of the moments of the random matrix with N . Allesina and Tang then convert this into

the parameter set that is commonly used in theoretical ecology, using a similar transformation as

above, and assuming that the results in [S15] hold for finite N . This then generates the explicit

factors of N in the resulting stability criteria.

C. Fixed-point analysis

We now wish to construct the stability plot in Fig. 1 in the main text, following [S1]. First, we

note that the fixed point quantities defined in Eqs. (2) and (3) of the main text are given by

ϕ = lim
N→∞

1

N

∑

i

θ⋆i ,

M = lim
N→∞

1

N

∑

i

x⋆i ,

q = lim
N→∞

1

N

∑

i

x⋆ix
⋆
i , (S11)

and

χ = lim
t→∞

lim
N→∞

1

N

∑

i

∫ t

0
dt′

δxi(t)

δhi(t′)

∣∣∣∣∣
hi(t′)=0

,

χT = lim
t→∞

lim
N→∞

1

N

∑

i

∫ t

0
dt′

δθi(t)

δhi(t′)

∣∣∣∣∣
hi(t′)=0

,
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χ2 = lim
t→∞

lim
N→∞

1

N

∑

i

∫ t

0

∫ t

0
dt′dt′′

δ2θi(t)

δhi(t′)δhi(t′′)

∣∣∣∣∣
hi(t′)=hi(t′′)=0

. (S12)

respectively. These quantities can also be written in terms of averages over realisations of the

effective dynamics

χ = lim
t→∞

∫ t

0
dt′
〈
1

σ

δx(t)

δη(t′)

〉
,

χT = lim
t→∞

∫ t

0
dt′
〈
1

σ

δθ(t)

δη(t′)

〉
,

χ2 = lim
t→∞

∫ t

0

∫ t

0
dt′dt′′

〈
1

σ2
δ2θ(t)

δη(t′)δη(t′′)

〉
,

ϕ = lim
t→∞

⟨θ(t)⟩,

q = lim
t→∞

⟨x(t)x(t′)⟩,

M = lim
t→∞

⟨x(t)⟩. (S13)

Setting ẋ = 0 in Eq. (S9) after dropping the index i, we thus obtain the following expression for

the fixed points of the surviving species

x⋆ =
1 + µM + σ

√
qz

1− Γσ2χ
Θ

(
1 + µM + σ

√
qz

1− Γσ2χ

)
, (S14)

where z is a Gaussian random variable with zero mean and unit variance. Following [S1], this then

leads to the self-consistency relations (with Dz = dz√
2π
e−z

2/2)

χ =
1

1− Γσ2χ

∫ ∆

−∞
Dz,

M =

√
qσ

1− Γσ2χ

∫ ∆

−∞
Dz (∆− z),

1 =
σ2

(1− Γσ2χ)2

∫ ∆

−∞
Dz (∆− z)2, (S15)

where ∆ = 1+µM√
qσ . We also have

ϕ =

∫ ∆

−∞
Dz,

χT =
dϕ

dh
=

1

σ
√
2πq

e−∆2/2,

χ2 =
d2ϕ

dh2
= − ∆

σ2q
√
2π
e−∆2/2. (S16)

For positive integers ℓ we now define the following truncated Gaussian integrals

wℓ(∆) ≡
∫ ∆

−∞
Dz (∆− z)ℓ. (S17)
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Explicitly, we have

w0(∆) =
1

2

[
1 + erf

(
∆√
2

)]
,

w1(∆) =
1

2

[
e−∆2/2

√
2

π
+∆

(
1 + erf

(
∆√
2

))]
,

w2(∆) =
1

2

(
1 + ∆2

) [
1 + erf

(
∆√
2

)]
+

1√
2π
e−∆2/2∆. (S18)

One also has the relation

w2(∆) = w0(∆) + ∆w1(∆). (S19)

After some algebra, we derive from Eqs. (S15) a single equation that we can solve to find ∆ for

a given (µ, σ,Γ) [the interaction statistics of the original community – see Eq. (S2)]. That is, we

solve the following numerically for ∆

σ2 =
w2(∆)

[w2(∆) + Γw0(∆)]2
. (S20)

We see therefore that ∆ is independent of µ. We can then obtain the remaining fixed-point order

parameters by substituting this value of ∆ into

χ = w0 + Γ
w2
0

w2
,

1

M
=

∆

w1

w2

w2 + Γw0
− µ,

q =

(
M

σw1

w2

w2 + Γw0

)2

,

ϕ = w0,

χT =
1

σ
√
q
(w1 −∆w0),

χ2 = − ∆

σ2q
(w1 −∆w0). (S21)

D. Transitions

The validity of the fixed point solution can break down in two different ways, indicating the

onset of instability.

1. Diverging abundances

One transition occurs when the average fixed-point abundance diverges, i.e. M → ∞. Con-

sulting Eqs. (S20) and (S21), the sets of points at which this transition occurs (for a fixed Γ)

obey

µ =
∆

w1

w2

w2 + Γw0
,
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σ2 =
w2

(w2 + Γw0)2
. (S22)

These can be viewed as a parametric set of equations in ∆ for the phase transition line in the µ–σ

plane (with Γ held fixed). From these equations, the solid lines in Fig. 1 in the main text can be

produced.

2. Linear instability

The other transition occurs when the fixed point becomes linearly unstable to perturbations.

Linearising the effective process in Eq. (S9) about its fixed point, we obtain for small perturbations

ϵ(t) = x(t)− x⋆ and δη(t) = η(t)− σ
√
qz that arise from an external white noise ξ(t)

ϵ̇ = x⋆
[
−ϵ+ Γσ2

∫
dt′G(t, t′)ϵ(t′) + σδη(t) + ξ

]
, (S23)

where x⋆ satisfies Eq. (S14) and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′) and ⟨ξ⟩ = 0. Taking the Fourier transform

(indicated by a tilde in the following), rearranging and taking the limit ω → 0 [S7], we find

lim
ω→0

⟨|ϵ̃(ω)|2⟩ = 1

(1− Γσ2χ)2/ϕ− σ2
. (S24)

The object on the right diverges when

(1− Γσ2χ)2 =ϕσ2, (S25)

indicating that our solution no longer holds and that the system becomes unstable to perturbations.

Using Eqs. (S15) we therefore deduce

ϕ =
1

σ2(1 + Γ)2
,

χ =
1

σ2(1 + Γ)
. (S26)

Finally, using Eqs. (S21), we see that

χσ2 =
ϕ

w2 + Γϕ
=

1

1 + Γ
,

⇒ w2 = ϕ,

⇒ ϕ = 1/2

⇒ ∆ = 0. (S27)

So finally, substituting ϕ = 1/2 into the first of Eqs. (S26), we see that an instability occurs when

σ2 =
2

(1 + Γ)2
, (S28)

as previously derived in [S1]. Using Eq. (S28), one obtains the dashed horizontal lines in Fig. 1 in

the main text.
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S2. REDUCED INTERACTION MATRIX AND JACOBIAN MATRIX

A. Definitions of the matrices

We now introduce and discuss several different matrices. One is the full (or original) N × N

interaction matrix a, with elements aij . A second matrix is what we call the ‘reduced interaction

matrix’, a′. This is obtained from the original interaction matrix by removing all rows and columns

corresponding to extinct species, and by carrying out a shift of the diagonal elements by −1 to

capture the −xi term inside the square bracket of the generalised Lotka-Volterra Eqs. (1) in the

main paper. This reduced matrix is of size NS×NS , where NS is the number of surviving species in

the long run [see Eq. (S4)]. We denote the reduced interaction matrix elements by a′ij = (aij − δij)

for i, j ∈ S, where S is the set of surviving species as t→ ∞.

Similarly, we also define the full and reduced Jacobian matrices of the GLVEs, J and J ′ respec-

tively. The (full) Jacobian of the system (about the fixed point x⋆) takes the form

Jij = δij


1− x⋆i +

∑

j

aijx
⋆
j


+ x⋆i (aij − δij) , (S29)

where i, j = 1, . . . , N .

We now imagine that (in a particular realisation) we re-arrange the species indices such that

i = 1, . . . , NS are the surviving species, and i = NS+1, . . . , N the extinct species. This can always

be done retrospectively without loss of generality. The Jacobian can then be written in block form

J =

(
J ′ B

0 D

)
, (S30)

The reduced Jacobian J ′ makes up the upper left NS×NS block. We label the lower right-hand

(N −NS ) × (N −NS ) block D. The upper-right block is labelled B. For an extinct species i we

have Jij = 0 for all j ̸= i [Eq. (S29)]. Hence the block on the lower left is zero, and the matrix D

is diagonal.

We hence have

det
(
J − λ11N

)
= det(J ′ − λ11NS

)det(D − λ11N−NS
), (S31)

(where 11N is the identity matrix of size N×N), and the eigenvalues of J are given by the combined

eigenvalues of J ′ and D.

We focus first on a species i that goes extinct (x∗i = 0). For such a species, one finds Jii =

1 − x∗i +
∑

j aijx
⋆
j < 0. Hence D is a diagonal matrix with only negative diagonal entries, and so

we need only consider the eigenvalues of J ′ to determine stability.

Now we consider the reduced Jacobian J ′. Given that 1 − x⋆i +
∑

j aijx
⋆
j = 0 for values of i

corresponding to surviving species, we see from Eq. (S29) that the reduced Jacobian matrix of the

Lotka-Volterra system takes the simple form

J ′
ij = x⋆i a

′
ij , (S32)
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where i, j ∈ S. Examples of eigenvalue spectra of the reduced Jacobian and the reduced interaction

matrix are given in Fig. S1.

FIG. S1: Panel (a): Example eigenvalue spectrum of the reduced Jacobian. Panel (b): Example spectrum

of the reduced interaction matrix. The red line and circle in panel (b) show the analytical predictions for

the bulk region and outlier eigenvalue in Eqs. (S97) and (S70) respectively. Parameters are σ = 1.1, µ = 0.9,

Γ = −0.5, N = 4000.

B. Reduced Jacobian is not practical for determining stability

One notes that the eigenvalue spectrum of the reduced Jacobian comes arbitrarily close to

the imaginary axis. This is observed for all values of the model parameters in the phase with a

unique fixed point. This is due to the fact that the distribution of fixed-point abundances x⋆i of

the surviving species comes arbitrarily close to zero. (The distribution of abundances of surviving

species is a Gaussian clipped at zero, see e.g. [S1].) For this reason, it is not helpful to study the

spectrum of the full or reduced Jacobian when determining stability – one cannot identify points

in parameter space at which one eigenvalue first touches the imaginary axis, or crosses into the

right half of the complex plane.

C. Spectrum of reduced interaction matrix determines stability

We now argue as to why we need only consider the eigenvalue spectrum of the reduced interaction

matrix a′ when determining stability instead of the reduced Jacobian. We note for the following

discussion that the leading eigenvalues of both the reduced Jacobian and the reduced interaction

matrix are real.

Eq. (S32) indicates that the reduced Jacobian matrix can be written as the product of the

reduced interaction matrix and a diagonal matrix of species abundances. The determinant of J ′ is

therefore the product of the determinants of these two matrices. The abundances in the diagonal

matrix are strictly positive, and therefore sgn(det D) = 1. Hence, sgn(det J ′) = sgn(det a′). If

the determinant of the reduced Jacobian changes sign as parameters are varied (indicating loss of

stability), so must therefore that of the reduced interaction matrix and vice versa.

Imagine now we start in a region of parameter space for which the fixed point is stable and
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that we then vary the model parameters. The fixed point becomes unstable at the point where the

leading eigenvalue of the reduced interaction matrix becomes positive. Therefore, we can deduce

the stability of the system by examining the eigenvalue spectrum of the reduced interaction matrix

only. A similar argument to this was given in Ref. [S16]. Crucially (as we will see), the leading

eigenvalue of the reduced interaction matrix is genuinely negative in the stable regime (i.e., not

infinitessimally close to the imaginary axis like that of the reduced Jacobian), and only reaches the

axis at the point of instability.

D. Components of the spectrum of the reduced interaction matrix

As illustrated in Fig. S1 (b), there is an elliptic ‘bulk’ region of the complex plane, to which

the majority of the eigenvalues of the reduced interaction matrix are confined, and a single outlier.

We therefore write the eigenvalue density of the reduced interaction matrix in the form

ρ(ω) = ρbulk(ω) +
1

NS
δ(ω − λoutlier). (S33)

In the following sections, we deduce both the bulk eigenvalue density and the location of the outlier

eigenvalue. We show that the point in parameter space at which the outlier crosses the imaginary

axis is given by Eq. (S22). We also demonstrate that the bulk spectrum crosses into the right half

of the complex plane at the point described by Eq. (S28).

S3. FINDING THE OUTLIER EIGENVALUE – GENERAL APPROACH

The outlier eigenvalue, λoutlier, of the reduced interaction matrix by definition must obey

det
(
λoutlier11NS

− a′
)
= 0, (S34)

where 11NS
is the identity matrix of size NS ×NS .

Suppose we introduce a uniform matrix u with all entries equal to ν/NS . Following Refs.

[S17, S18] and using Sylvester’s determinant identity, one finds

det

(
11NS

− ν

NS
G

)
= 1− ν

NS

∑

ij

Gij(1 + λoutlier) = 0, (S35)

where we have introduced the resolvent matrix G(1+λoutlier) = [λoutlier11NS
− (a′−u)]−1. Thus, to

find the outlier eigenvalue, one has to find the resolvent matrix and solve Eq. (S35) for λoutlier. We

stress that all elements of the resolvent are required in Eq. (S35), not only the diagonal entries.

We note that we have the freedom to choose the value of ν, as long as it is non-zero and

λoutlier11NS
− (a′ − u) remains invertible. We exploit this freedom to simplify the calculation of the

resolvent in the next section.
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S4. USING THE GENERATING FUNCTIONAL TO FIND THE RESOLVENT OF THE

REDUCED INTERACTION MATRIX

A. Series expansion for the resolvent of the reduced interaction matrix

To simplify our calculation of the resolvent matrix, we choose ν = ϕµ in Eq. (S35). Letting

zij = limt→∞[aij − µN−1]θiθj [see the discussion preceding Eq. (S4) for a definition of θi], we

see that the disorder-averaged resolvent matrix that we must evaluate to find the outlier can be

expressed as the following series

G[ω] ≡ N−1
S

∑

i,j∈S
Gij(ω) = N−1

S

∑

i,j∈S
[δijω − zij ]

−1

= N−1
S

∑

ij

[
ω−1δijθiθj + ω−2zij + ω−3

∑

k

zikzkj + · · ·
]
, (S36)

where sums over i, j ∈ S denote a sum over the reduced interaction matrix elements, whereas sums

over ij indicate a sum over all elements of the original interaction matrix.

To find the terms of this series, we now construct the following generating functional

Z[ψ,λ] =

∫
D[x, x̂] exp


i
∑

i

∫
dt


x̂i(t)


 ẋi(t)
xi(t)

−


1− xi(t) +

∑

j

aijxj(t) + hi(t)










× exp


−i

∫
dt
∑

ij

λij(t)[aij − µN−1]θi(t)θj(t)


 exp

(
i
∑

i

∫
dtxi(t)ψi(t)

)
. (S37)

This generating functional has the same form as in Eq. (S3), with the addition of another source

term containing the auxiliary variables λij(t), which we introduce in this step. The dynamics of

xi(t) are still constrained to follow the Lotka-Volterra equations in Eq. (S1), but by functionally

differentiating with respect to λij(t), we can obtain the terms in the series in Eq. (S36). For

example,

δZ

δλij(t)

∣∣∣∣
ψ=0,λ=0

= −i[aij − µN−1]θi(t)θj(t) = −izij . (S38)

We now find for the disorder-averaged resolvent [from which we can find the outlier eigenvalue

via Eq. (S35)]

G[ω] = N−1
S

∑

ij

lim
t→∞

[
ω−1δijθiθj + iω−2

δZ

δλij(t)
− ω−3

∑

k

δ2Z

δλik(t)δλkj(t)
+ · · ·

]∣∣∣∣
ψ=0,λ=0

. (S39)
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B. Evaluating the series for the resolvent

Setup and strategy for evaluation of the series

To find the terms of the series in Eq. (S39), we begin by calculating the following average that

appears in the expression for Z[ψ,λ]

A = exp


i
∑

i

∫
dt


−

∑

j

aij x̂i(t)xj(t)




 exp


−i

∫
dt
∑

ij

λij(t)[aij − µ/N ]θi(t)θj(t)




= exp


−i

∑

i

∫
dt


∑

j

µ

N
x̂i(t)xj(t)






× exp


− σ2

2N

∑

ij

[∫
dt x̂i(t)xj(t) + λij(t)θi(t)θj(t)

]2



× exp


− σ2

2N

∑

ij

Γ

[∫
dt x̂i(t)xj(t) + λij(t)θi(t)θj(t)

] [∫
dt x̂j(t)xi(t) + λji(t)θi(t)θj(t)

]
 .

(S40)

One thus finds that the derivatives in Eq. (S39) can be written as, for example,

δ2Z

δλikδλkj

∣∣∣∣
ψ=0,λ=0

=

〈
1

A

δ2A

δλikδλkj

〉 ∣∣∣∣
λ=0

, (S41)

where we note that there are two kinds of averages here: an average over realisations of the

interaction coefficients represented by · · · and an average over the dynamics enforced by the disorder

averaged generating functional denoted by angular brackets ⟨· · · ⟩ [see Eq. (S7)].

The series in Eq. (S39) can therefore be rewritten

G[ω] = 1

ϕN

∑

ij

lim
t→∞

[
δijθiθj
ω

+
i

ω2

〈
1

A

δA

δλij(t)

〉
− 1

ω3

∑

k

〈
1

A

δ2A

δλik(t)δλkj(t)

〉
+ · · ·

] ∣∣∣∣
λ=0

. (S42)

Let us now begin to construct the series for the resolvent in Eq. (S42). Consider the derivatives of

A:

Bij(t) ≡
1

A

δA

δλij(t)

= −
[
θi(t)θj(t)

σ2

N

∫
dt′x̂i(t′)xj(t′) + θi(t)θj(t)

σ2

N

∫
dt′θi(t′)θj(t′)λij(t′)

+ θi(t)θj(t)
Γσ2

N

∫
dt′x̂j(t′)xi(t′) + θi(t)θj(t)

Γσ2

N

∫
dt′θi(t′)θj(t′)λji(t′)

]
,

δ2A

δλik(t)δλkj(t)
=

[
δBik(t)

δλkj(t)
+BikBkj

]
A,

δ3A

δλik(t)δλkl(t)λlj(t)
=

[
Bik

δBkl(t)

δλlj(t)
+
δBik(t)

δλkl(t)
Blj +BikBklBlj

]
A,
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δ4A

δλik(t)δλkl(t)λlm(t)λmj(t)
=

[
δBik(t)

δλkl(t)

δBlm(t)

δλmj(t)
+
δBik(t)

δλmj(t)

δBlm(t)

δλkl(t)
+BikBkl

δBlm(t)

δλmj(t)

+Bik
δBkl(t)

δλlm(t)
Bmj +

δBik(t)

δλkl(t)
BlmBmj +BikBklBlmBmj

]
A, (S43)

where terms of higher order in N−1 have been omitted.

The series for the resolvent in Eq. (S42) is a complicated mixture of terms with Bij and its

derivatives appearing in various combinations. Manifestly, all second order or higher order deriva-

tives of Bij evaluate to zero since Bij is linear in λij and λji, but some terms with first derivatives

are non-vanishing in the thermodynamic limit.

Our strategy for evaluating the series for the resolvent is as follows. We first consider the terms

involving derivatives of Bij with respect to λkl and use diagrammatic methods to understand the

structure of the surviving terms in the thermodynamic limit. We use this to show that the series

in Eq. (S42) can be rewritten partly in terms of the resolvent of an ensemble of random matrices

with an elliptic spectrum of the type described in Ref. [S15]. The complexity of the series can

therefore be greatly simplified, see Eq. (S51) below. In particular, the resulting expression for the

series contains averaged products of the objects Bij only.

In a second step, we show that these surviving terms can be written in terms of the fixed-point

quantities in Eqs. (S13). We then construct an auxiliary diagrammatic formalism to aid us in

spotting the self-similarity of the series. This ultimately enables us to perform the summation

[see Eq. (S67)] and find a compact expression for the outlier eigenvalue in terms of the fixed point

quantities [see Eq. (S70)].

Terms with derivatives of Bij with respect to λkl

Now, we are tasked with evaluating the derivatives of A with respect to λij(t) in Eq. (S43).

First consider the following expression that arises from A−1 δ2A
δλikδλkj

1

Nϕ

∑

i,k,j

〈
δBik
δλkj

〉 ∣∣∣∣
λ=0

= − Γσ2

ϕN2

∑

i,k,j

⟨δijθiθk⟩+O(N−1) = −ϕΓσ2. (S44)

One notes that this is the same as −ϕΓσ2 × 1
Nϕ

∑
ij θiδij . Consider also the term that arises from

A−1 δ3A
δλikδλklδλlj

1

Nϕ

∑

i,k,l,j

〈
Bik

δBkl
δλlj

〉 ∣∣∣∣
λ=0

=
Γσ4

ϕN3

∑

i,k,l,j

〈[
δkjθi(t)θl(t)θk(t)

(∫
dt′x̂i(t′)xk(t

′) + Γ

∫
dt′x̂k(t

′)xi(t′)
)]〉

+O(N−1)

=
1

ϕN

∑

i,j,k

(−ϕΓσ2)δkj ⟨Bik⟩ |λ=0 +O(N−1)
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=− Γσ2ϕ× 1

Nϕ

∑

i,j

⟨Bij⟩ |λ=0 +O(N−1). (S45)

We begin to see a pattern emerging: if δBkl
δλlj

appears inside the angular brackets, it gives rise to a

Kronecker delta function and a multiplicative factor. We note that terms like 1
Nϕ

∑
i,k,l,j

〈
Bkl

δBik
δλlj

〉

do not survive in the thermodynamic limit, since they give rise to too many Kronecker delta

functions, meaning that the factors of 1/N are not cancelled when we perform the sums.

Now let us examine examples of terms with more than one factor of δBkl
δλlj

. Consider for example

the following terms that appear in A−1 δ4A
δλikδλklδλlmδλmj

1

Nϕ

∑

ijklm

〈
δBik(t)

δλkl(t)

δBlm(t)

δλmj(t)

〉 ∣∣∣∣
λ=0

=
1

Nϕ

∑

ijklm

δil
Γσ2

N
θiθkδlj

Γσ2

N
θlθm = ϕ2Γ2σ4,

1

Nϕ

∑

ijklm

〈
δBik(t)

δλmj(t)

δBlm(t)

δλkl(t)

〉 ∣∣∣∣
λ=0

=
1

Nϕ

∑

ijklm

δij
Γσ2

N
θiθkδll

Γσ2

N
θlθm = ϕ2Γ2σ4. (S46)

Both of these contributions give rise to terms that survive in the thermodynamic limit.

We can understand which terms survive more easily with the aid of so-called rainbow diagrams

[S19–S21]. Representing each pair of indices that appear in the same object [e.g. (i, k) in Bik] with

a pair of dots and joining indices that are constrained to be the same with lines, the above two

terms in Eq. (S46) can be represented diagrammatically (respectively)

Horizontal lines join indices that are the same by construction. Arcs connect indices that are

constrained to be the same by Kronecker deltas that arise from the derivatives δBik(t)
δλmj(t)

∝ δijδkm.

Only diagrams that are of a planar structure (i.e. those without intersecting arcs) survive in the

thermodynamic limit. This is known as t’Hooft’s theorem [S19, S21–S23].

Summation of terms with derivatives of Bij with respect to λij

Let us consider the sum of all the surviving terms in the series for G(ω) = 1
Nϕ

∑
ij Gij(ω) that

contain only derivatives of Bij

g(ω) ≡ ω−1 − ω−3 1

Nϕ

∑

ijk

〈
δBik
δλkj

〉 ∣∣∣∣
λ=0

+ ω−5 1

Nϕ

∑

ijklm

[〈
δBik
δλkl

δBlm
δλmj

〉
+

〈
δBik
δλmj

δBlm
δλkl

〉] ∣∣∣∣
λ=0

+ · · ·
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=
1

ω
− ϕΓσ2

ω3

1

N

∑

ijk

δij +
ϕ2Γ2σ4

ω5

1

N

∑

ijklm

[δilδlj + δijδkmδmk] + · · · . (S47)

This sum can be represented diagrammatically as the sum of all so-called planar diagrams

This is exactly the same series of diagrams [S21, S23] as for the resolvent of the random ma-

trices investigated by Ginibre with elliptic eigenvalue spectra [S24] (once terms that vanish in the

thermodynamic limit have been removed). That is,

g(ω) =
1

ω
− 1

ω3

∑

ik

yikyki +
1

ω5

∑

iklm

yikyklylmymi + · · · (S48)

where yik = 0 and yikylm = ϕσ2

N [Γδimδkl + δilδkm] and yik are Gaussian random variables. This

resolvent can be shown to obey [S21]

g(ω) =
1

ω − ϕσ2Γg(ω)
,

⇒ g(ω) =
1

2ϕΓσ2

[
ω −

√
ω2 − 4ϕΓσ2

]
=

2

ω +
√
ω2 − 4ϕΓσ2

. (S49)

This same series appears repeatedly in the expression for the full resolvent G(ω), which means we

can gather terms with the same power Bij . For example, we can gather terms that are linear in

Bij [see Eq. (S42) and (S43)] and do not vanish in the thermodynamic limit in the following way

i

ϕNω

∑

ij

〈
1

ω
Bij −

1

ω3

∑

kl

Bik
δBkl(t)

δλlj(t)
+

1

ω5

∑

klmn

Bik

(
δBkl(t)

δλlm(t)

δBmn(t)

δλnj(t)
+
δBkl(t)

δλnj(t)

δBmn(t)

δλlm(t)

)
+ · · ·

〉

+
i

ϕN

∑

ijkl

〈−1

ω3

δBik
δλkl

[
1

ω
Blj −

1

ω3

∑

mn

Blm
δBmn(t)

δλnj(t)

+
1

ω5

∑

mnqr

Blm

(
δBmn(t)

δλnq(t)

δBqr(t)

δλrj(t)
+
δBmn(t)

δλrj(t)

δBqr(t)

δλnq(t)

)
+ · · ·

]〉
+ · · ·

=
i

ϕN

∑

ijk

[〈
1

ω
Bikδkjg(ω)

〉
−
∑

kl

〈
1

ω3

δBik
δλkl

Bljg(ω)

〉

+
∑

klmn

〈
1

ω5

(
δBik(t)

δλkl(t)

δBlm(t)

δλmn(t)
+
δBik(t)

δλmn(t)

δBlm(t)

δλkl(t)

)
Bnjg(ω)

〉
+ · · ·

]

=
ig(ω)2

ϕN

∑

ij

⟨Bij⟩ . (S50)

Taking into account similar considerations for the higher-order terms in Bij , we obtain following
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series for the full resolvent

G(ω) = g(ω) +
ig(ω)2

Nϕ

∑

ij

⟨Bij⟩|λ=0 −
g(ω)3

Nϕ

∑

ijk

⟨BikBkj⟩|λ=0 −
ig(ω)4

Nϕ

∑

ijkl

⟨BikBklBlj⟩|λ=0 + · · · .

(S51)

An auxiliary diagrammatic convention

Now that we have simplified the problem by collecting the terms in the series with the same

multiples of the matrix B, we can proceed to evaluate the series as a whole. To aid us in spotting

the self-similarity of the series, we introduce a second set of diagrammatic conventions.

Each factor of Bij (when the limit λij → 0 is taken) has two terms [see the first of Eqs. (S43)].

When we expand a product of m matrices B and take the ensemble average, we generate 2m terms,

each one containing a product of m of the summands of B.

Consider for example the second-order term −g(ω)3

Nϕ

∑
ijk⟨BikBkj⟩. Referencing the definition of

Bik in Eq. (S43), we obtain the following terms upon evaluating the ensemble average in the limit

λij → 0

−g(ω)
3

Nϕ

∑

ijk

⟨BikBkj⟩|λ=0 = −g(ω)
3σ4

N3ϕ

∑

ijk

[〈
θi(t)θk(t)θj(t)

∫
dt′dt′′x̂i(t′)xk(t

′)x̂k(t
′′)xj(t′′)

〉

+ Γ

〈
θi(t)θk(t)θj(t)

∫
dt′dt′′xi(t′)x̂k(t

′)x̂k(t
′′)xj(t′′)

〉

+ Γ

〈
θi(t)θk(t)θj(t)

∫
dt′dt′′x̂i(t′)xk(t

′)xk(t
′′)x̂j(t′′)

〉

+ Γ2

〈
θi(t)θk(t)θj(t)

∫
dt′dt′′xi(t′)x̂k(t

′)xk(t
′′)x̂j(t′′)

〉]
. (S52)

Let us take the specific example of the first bracket. First, we observe from Eq. (S7) that since the

different species decouple in the thermodynamic limit, the sums factorise

lim
t→∞,N→∞

(i)2σ4g(ω)3

ϕN3

∑

ijk

〈
θi(t)θk(t)θj(t)

∫
dt′dt′′x̂i(t′)xk(t

′)x̂k(t
′′)xj(t′′)

〉

= lim
t→∞,N→∞

(i)2σ4g(ω)3

ϕN3

∫
dt′dt′′

∑

i

〈
θi(t)x̂i(t

′)
〉∑

k

〈
θk(t)xk(t

′)x̂k(t
′′)
〉∑

j

〈
θj(t)xj(t

′′)
〉
. (S53)

Then taking the limit t→ ∞ and assuming that time-translational invariance applies, we find

lim
t→∞,N→∞

(i)2σ4g(ω)3

ϕN3

∑

ijk

〈
θi(t)θk(t)θj(t)

∫
dt′dt′′x̂i(t′)xk(t

′)x̂k(t
′′)xj(t′′)

〉

= lim
t→∞

σ4g(ω)3

ϕ

∫
dt′dt′′T (t, t′)G(t′, t′′)M(t′′) =

σ4g(ω)3

ϕ
χTχM, (S54)

where we have used the final value theorem for Laplace transforms limt→∞ f(t) = limu→0 uLt[f(t)](u),
and Eqs. (S9 – S13) and (S16) to deduce the last equality. The other terms can be evaluated in a

similar manner. We thus obtain

−g(ω)
3

Nϕ

∑

ijk

⟨BikBkj⟩|λ=0 =
σ4g(ω)3

ϕ

[
χTχM + Γχ2M

2 + Γχ2
T
q + Γ2χTχM

]
. (S55)
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It is possible to generalise this approach and to represent each term with a diagram. We assign a

node to each summation index. The direction of the arrows between nodes indicates which of the

two summands is chosen from each factor of Bij . Nodes connecting two edges involve two variables

(xk or x̂k) whereas nodes connected only to one edge are associated with a sum over one variable.

With the above example in mind, we construct diagrams with the following rules:

= σ2,

= Γσ2,

= g(ω)χT ,

= g(ω)M,

= g(ω)q,

= g(ω)χ2,

= = g(ω)χ. (S56)

We can therefore write for the terms in Eq. (S52)

−g(ω)
3

N

∑

ijk

⟨BikBkj⟩|λ=0 = +

+ + . (S57)

The series in Eq. (S42) can thus be written as

1

Nϕ

∑

i,j

Gij = g(ω) +
1

ϕ
T , (S58)

where T is the sum over all possible such diagrams.

Sum over all possible diagrams

The challenge now is to perform the sum over all possible diagrams. By ‘all possible diagrams’,

we mean diagrams with any number of nodes and any configuration of edge directions. We do this

by categorising each diagram by the directions of its outermost two edges. In this way, the sum

over all diagrams can then be decomposed in a self-similar fashion.

Forgetting for now about the contributions from the outermost nodes, consider the sum over

all possible diagrams with two outer edges of the type . We call this sum D1 and denote it

diagrammatically as

D1 =

≡ +

+ +

+ +
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+ · · · . (S59)

Equally, we define the sums over all possible diagrams with other combinations of outer edge pairs

= D2, (S60)

= D3, (S61)

= D4. (S62)

With this in mind, the sum over all diagrams in Eq. (S58) can be rewritten

T = +

+ + , (S63)

so Eq. (S58) becomes

1

Nϕ

∑

i,j

Gij(ω) = g(ω) +
[σ2g(ω)]2

ϕ

[
χTD1M + ΓMD2M + ΓχTD3χT + Γ2MD4χT

]
. (S64)

We now make the crucial observation that the infinite sums D1, D2, D3 and D4 can be expressed

in terms of one another due to the self-similarity of the series. Diagrammatically, we have

= +

+ + + + ∅, (S65)

where the last two terms account for diagrams with one inner node and no inner nodes respectively.

Similarly we have

= +

+ + + , (S66)

Substituting iteratively the expression in Eqs. (S65) and (S66) into Eq. (S63) produces the summa-

tion over all diagrams that we desire. Using Eqs. (S65) and (S66) and the definitions in Eqs. (S59)-

(S62), we find the following set of simultaneous equations for the quantities D1, D2, D3 and D4,

D1 = [σ2g(ω)]2
(
χD1χ+ ΓqD2χ+ ΓχD3χ2 + Γ2qD4χ2

)
+ χg(ω) +

1

σ2
,

D2 = [σ2g(ω)]2
(
χ2D1χ+ ΓχD2χ+ Γχ2D3χ2 + Γ2χD4χ2

)
+ χ2g(ω),

D3 = [σ2g(ω)]2
(
χD1q + ΓqD2q + ΓχD3χ+ Γ2qD4χ

)
+ qg(ω),

D4 = [σ2g(ω)]2
(
χ2D1q + ΓχD2q + Γχ2D3χ+ Γ2χD4χ

)
+ χg(ω) +

1

Γσ2
. (S67)
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C. Final expression for the outlier

We now are left with the relatively simple task of solving the linear Eqs. (S67) for D1(ω),

D2(ω), D3(ω) and D4(ω) to obtain the disorder-averaged resolvent 1
NS

∑
i,j Gij(ω). We find that

the functions D1(ω), D2(ω), D3(ω) and D4(ω) are given by

D1(ω) =
1

σ2D[g(ω)]

[
1− g(ω)χΓσ2

]
,

D2(ω) =
χ2g(ω)

D[g(ω)]
,

D3(ω) =
qg(ω)

D[g(ω)]
,

D4(ω) =
1

Γσ2D[g(ω)]

[
1− g(ω)χσ2

]
,

D[g(ω)] = 1− (1 + Γ)σ2χg(ω) +
[
(χ)2 − χ2q

]
[g(ω)]2Γσ4. (S68)

Substituting these expressions into Eq. (S64), one obtains

G[ω] = g(ω) +
σ2[g(ω)]2

ϕD[g(ω)]

[
χTM(1 + Γ) + Γσ2

(
M2χ2 + χ2

T
q − 2χχTM

)
g(ω)

]
. (S69)

Finally, now that we have the function G[ω], the outlier eigenvalue we seek is then given by the

solution λoutlier to [c.f. Eq. (S35)]

G[1 + λoutlier] =
1

µϕ
. (S70)

Solution strategy

The solution λoutlier for a given set (µ, σ2,Γ) can be obtained efficiently from Eq. (S70) by

adopting the following parametric solution strategy. First, one obtains the fixed-point quantities

χ, χT , χ2, q, M and ϕ from Eqs. (S20) and (S21). Then, one solves the following for g

F [g] ≡ g +
σ2g2

ϕD[g]

[
χTM(1 + Γ) + Γσ2

(
M2χ2 + χ2

T
q − 2χχTM

)
g
]
=

1

µϕ
, (S71)

where

D[g] = 1− (1 + Γ)σ2χg +
[
(χ)2 − χ2q

]
g2Γσ4. (S72)

Eq. (S71) is a cubic equation and can be solved readily.

Then one plugs the resulting value of g into the following to obtain the outlier

λoutlier(g) = −1 +
1

g
+ ϕσ2Γg. (S73)

This last relation results from the expression for g(ω) in the first line of Eq. (S49).
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Validity of the solutions

When solving the cubic Eq. (S71) for g, we obtain a maximum of three possible solutions

for the outlier eigenvalue. We thus seek a criterion by which to rule out the two unphysical

solutions. This is accomplished by realising that g is actually the trace of the resolvent matrix in

the thermodynamic limit.

Let us examine again the series in Eq. (S42), but now with the sum over all elements
∑

ij

replaced by a trace (i.e. setting i = j and summing over the single index i). We then see that most

terms in this modified series no longer survive in the thermodynamic limit. The only ones that do

survive are those proportional to δij . Therefore, the trace of the resolvent is simply given by those

terms consisting only of products of derivatives like δBik
δλkj

, which means that 1
N

∑
iGii(ω) = g(ω).

One can show as in Ref. [S9] (the calculation follows along very similar lines and we do not

reproduce it here), that the trace of the resolvent matrix can be related to the response function

of a carefully constructed linear process. By requiring that the power spectrum of fluctuations of

this linear process be positive, we can deduce that the modulus squared of this response function

(which is equivalent to g) must be greater than the reciprocal of the variance of the random matrix

elements. We hence obtain the following constraint on g [analogous to Eq. (S46) of Ref. [S9]]

|g|2 < 1

ϕσ2
. (S74)

We note that when g = 1/
√
ϕσ2, λoutlier = −1 + (1 + Γ)

√
ϕσ2 and the one valid solution for the

outlier is absorbed into the bulk of the eigenvalue spectrum [which is given in Eq. (S97)].

Special case: Γ = 0

In this special case, Eq. (S70) becomes quadratic, allowing us to obtain a more compact ex-

pression for the outlier. Writing λ instead of λoutlier (to keep the resulting relation compact) we

have

1

1 + λ
+

σ2

ϕ(1 + λ)

χTM

1 + λ− σ2χ
=

1

ϕµ
, (S75)

from which one finds the pleasingly succinct expression

λ = −1 +
ϕ

2

[
µ+ σ2 +

√
(µ− σ2)2 + 4χTMµσ2/ϕ2

]
, (S76)

where we have used χ = ϕ at the fixed point for Γ = 0.

D. The diverging abundance transition (M → ∞) corresponds to the outlier crossing the

imaginary axis

We now proceed to show that when the M → ∞ transition occurs, the outlier eigenvalue given

in Eq. (S70) hits the imaginary axis.
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Multiplying both sides of the first of Eqs. (S71) by µϕD[g], we obtain the following cubic

D[g]{µϕF [g]− 1} =
[
1− (1 + Γ)σ2χg + Γσ4

(
χ2 − χ2q

)
g2
]
[1− µϕg]

− µσ2g2
[
χTM(1 + Γ) + Γσ2

(
M2χ2 + χ2

T
q − 2χχTM

)
g
]
= 0. (S77)

We now note that if λoutlier = 0 is indeed a solution to Eqs. (S70), then Γσ2ϕg2 − g + 1 must be

a factor of the left-hand side of Eq. (S77) [one can see this by setting λoutlier = 0 in Eq. (S73)]. If

this is the case, then we must be able to factorise the cubic in Eq. (S77) to give an expression of

the form

(Γσ2ϕg2 − g + 1)(1 + bg) = 0, (S78)

where b is a coefficient to be found. Equating coefficients in the two cubic expressions in Eqs. (S77)

and (S78), one obtains three expressions for b which must all be equal if Eq. (S78) is a valid

factorisation of Eq. (S77). These expressions are

b1 = 1− (1 + Γ)σ2χ− µϕ,

b2 = Γσ2ϕ− (1 + Γ)σ2χµϕ− Γσ4χ2 + µσ2χTM,

b3 = −µσ
2

ϕ

[
χ2M

2 + χ2
T
q − 2χχTM + ϕ(χ2 − χ2q)

]
. (S79)

If we can show that b1 = b2 = b3 when M → ∞, then we will have proved that λoutlier = 0 is a

possible solution when M → ∞. We can see that this is indeed the case by writing each of the

above expressions b1, b2 and b3 in terms of only functions of ∆ and Γ. We first note from the

relations in Eq. (S21) that when M → ∞ we have

σ2µχTM =
w2∆(w1 −∆w0)

(w2 + Γw0)2
,

χσ2 =
w0

w2 + Γw0
,

Γσ2ϕ =
Γw0w2

(w2 + Γw0)2
,

w2 = w0 +∆w1. (S80)

We therefore find that the first two expression for b are equal [recalling Eq. (S19)]

b1 =
w1[w2 + Γw0 − (1 + Γ)w0]−∆w0w2

w1(w2 + Γw0)
= ∆

w2
1 − w0w2

w1(w2 + Γw0)
,

b2 =
Γw0w2w1 − (1 + Γ)w2

0∆w2 − Γw1w
2
0 +∆w2w1(w1 −∆w0)

w1(w2 + Γw0)2

= ∆
Γw0w

2
1 − Γw2

0w2 + w2w
2
1 − w2

2w0

w1(w2 + Γw0)2
= b1. (S81)

Noting further the following equalities in the limit M → ∞

−µσ2χ2M
2 = ∆2 (w1 −∆w0)w1

w2 + Γw0
,

−χ2
T
qµσ2 = −∆

w2(w1 −∆w0)
2

w1(w2 + Γw0)
,
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2χχTMµσ2 =
2w0∆(w1 −∆w0)

(w2 + Γw0)
,

−µσ2ϕχ2 = − ∆w3
0

w1(w2 + Γw0)
,

µσ2χ2qϕ = −∆2w0w2(w1 −∆w0)

w1(w2 + Γw0)
, (S82)

we obtain for the final expression

b3 =
∆

w0w1(w2 + Γw0)

[
∆w2

1(w1 −∆w0)− w2(w1 −∆w0)
2

+ 2w0w1(w1 −∆w0)− w3
0 −∆w0w2(w1 −∆w0)

]

=
∆

w0w1(w2 + Γw0)

[
w0w

2
1 − w2

0w2

]
= b1. (S83)

Hence we have shown that b1 = b2 = b3. This means that when M → ∞, we can write

D[g]{µϕF [g]− 1} = (Γσ2ϕg2 − g + 1){1 + [1− (1 + Γ)σ2χ− µϕ]g} = 0. (S84)

Hence, λ = 0 is a solution to this equation when M → ∞.

Let us examine the alternative solution to Eq. (S84) g = −[1− (1 + Γ)σ2χ− µϕ]−1 = −b−1
1 to

see if it satisfies the criterion in Eq. (S74). One can examine the function r(∆) = ϕσ2/|b1|2 − 1

(which turns out to be independent of Γ). In order for the transition M → ∞ to occur, we must

have that µ > 0 (see Fig. 1 in the main text, and also [S8]), and hence that ∆ > 0 [as can be seen

from the second of Eqs. (S21) when M → ∞. For ∆ > 0, it can be verified that r(∆) > 0]. Thus,

one finds that the only valid solution to Eqs. (S84) is the one that corresponds to λ = 0.

S5. BULK SPECTRUM: DERIVATION USING THE HERMITIZED RESOLVENT

A. Hermitized resolvent

In Section S4, we evaluated a series expansion of the resolvent matrix so that we could find the

outlier eigenvalue. In the region of the complex plane in which the outlier resides, the resolvent

is analytic, which is why we could use the expansion in Eq. (S39). In order to find the bulk

eigenvalue density, we also need to evaluate the resolvent matrix (in this case its trace, rather than

the sum of all its elements). However, in the region of the complex plane occupied by the bulk

of the eigenvalue spectrum, the resolvent is no longer analytic. So that we can proceed, we must

construct an alternative series expansion for the resolvent that takes this non-analytic nature into

account. We follow the method of Ref. [S25], which involves constructing a ‘hermitized’ resolvent.

We have the following identity

ρ(x, y) =
1

π
∂̄G(ω, ω⋆)|ω=1+λ, (S85)

relating the disorder-averaged resolvent

G(ω, ω⋆) ≡
〈

1

Nϕ
Tr

[
1

ω11NS
− z

]〉
(S86)
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to the eigenvalue density ρ(x, y). We have again written zij = (aij−µN−1)θiθj , as well as ω = x+iy

and ∂̄ = (∂x + i∂y)/2. From this, by the Cauchy-Riemann equations of complex analysis, we see

immediately that the eigenvalue density is non-zero if and only if the resolvent is non-analytic.

We now define the 2NS × 2NS Hermitian matrix

H =

[
0 z − ω11NS

(z − ω11NS
)† 0

]
, (S87)

and the Hermitized Green’s function

H(η, ω, ω⋆) =

〈
1

η −H

〉
. (S88)

From these definitions we see that we can recover the resolvent we seek via

G(ω, ω⋆) =
1

Nϕ
Tr
[
H21(0, z, z⋆)

]
, (S89)

where the indices of H refer to its blocks. Hence, if we define

H−1
0 ≡

[
η11NS

ω11NS
ω⋆11NS

η11NS

]
,

J ≡
[
0 z

z† 0

]
, (S90)

then we obtain the following Dyson series for H,

H = H0 + ⟨H0JH0⟩+ ⟨H0JH0JH0⟩+ · · · , (S91)

which then yields the resolvent we desire.

B. The series for the bulk spectrum is that of a Gaussian random matrix

Let us consider for example the first two non-trivial terms in Eq. (S91). We have

[H0JH0]
21 =

1

(η2 − |ω|2)2
[
(ω⋆)2z + η2z†

]
,

[H0JH0JH0]
21 =

1

(η2 − |ω|2)3
{
−ηz†(ωηz† + ηω⋆z)− ω⋆z[(ω⋆)2z + η2z†]

}
. (S92)

In order to find the eigenvalue density of the bulk region, we take the trace of these terms. That

is, we must find quantities such as 1
NS

∑
i zii and

1
NS

∑
ik zikz

†
ki. This is notably different to the

calculation of the outlier eigenvalue. In that case, we instead had to sum all elements of the resolvent

and we therefore needed to calculate objects like 1
NS

∑
ij zij and

1
NS

∑
ijk zikzkj . We will now show

that the resulting series for the bulk spectrum is far simpler by virtue of this difference. Many

terms that were important for the calculation of the outlier eigenvalue vanish in thermodynamic

limit in the calculation of the bulk spectrum.



S25

Let us examine the quantity 1
NS

∑
ik zikz

†
ki. This can once again be derived from the generating

functional as

1

Nϕ

∑

ik

zikz
†
ki = − 1

Nϕ

∑

ik

〈
1

A

δ2A

δλ2ik

〉 ∣∣∣∣
λ=0

= − 1

Nϕ

∑

ik

[〈
δBik(t)

δλik(t)

〉
+
〈
B2
ik

〉] ∣∣∣∣
λ=0

. (S93)

Examining the latter quantity we find

− 1

Nϕ

∑

ik

〈
B2
ik

〉
= − 1

N3ϕ

∑

ik

[〈
θi(t)θk(t)θi(t)

∫
dt′dt′′x̂i(t′)xk(t

′)x̂i(t′′)xk(t
′′)
〉

+ Γ

〈
θi(t)θk(t)θi(t)

∫
dt′dt′′xi(t′)x̂k(t

′)x̂i(t′′)xk(t
′′)
〉

+ Γ

〈
θi(t)θk(t)θi(t)

∫
dt′dt′′x̂i(t′)xk(t

′)xi(t′′)x̂k(t
′′)
〉

+ Γ2

〈
θi(t)θk(t)θi(t)

∫
dt′dt′′xi(t′)x̂k(t

′)xi(t′′)x̂k(t
′′)
〉]

= O(N−1). (S94)

Immediately, we see that the factor of N3 in the denominator is not cancelled by the factor of

N2 that arises from carrying out the sums over i and k. Therefore, this term vanishes in the

thermodynamic limit. However, considering the other term in Eq. (S93) we see that

− 1

Nϕ

∑

ik

〈
δBik(t)

δλik(t)

〉
=

1

Nϕ

∑

ik

〈
θiθk

σ2

N

〉
= σ2ϕ. (S95)

In general, only the terms containing solely derivatives of Bij with respect to λkl survive in the

thermodynamic limit. So, in a similar way to Section S4B [see the discussion around Eq. (S47)

in particular], we find that the series for the trace of the resolvent can be represented by the

same series of diagrams [S21] as for the resolvent of the kinds of random matrices investigated by

Ginibre, which had elliptic eigenvalue spectra [S24] (once terms that vanish in the thermodynamic

limit have been removed).

That is, if we were to represent the series in Eq. (S91) with diagrams, it would take the same

form as that depicted after Eq. (S49), except now the edges would carry two indices: a block index

(from the hermitization) and the usual species index [S21, S23, S25]. We hence arrive at the result

[S15, S21]

G(ωx, ωy) =





ω
2ϕΓσ2

[
1−

√
1− 4ϕΓσ2/ω2

]
for

(
ωx
1+Γ

)2
+
(
ωy

1−Γ

)2
> ϕσ2,

ωx
ϕσ2(1+Γ)

− iωy

ϕσ2(1−Γ)
for

(
ωx
1+Γ

)2
+
(
ωy

1−Γ

)2
< ϕσ2,

(S96)

where ω = ωx + iωy. Consulting Eq. (S85), the resulting eigenvalue density of the bulk region is

ρbulk(x, y) =





1
πϕσ2(1−Γ2)

for
(

1+x
1+Γ

)2
+
(

y
1−Γ

)2
> ϕσ2,

0 for
(

1+x
1+Γ

)2
+
(

y
1−Γ

)2
< ϕσ2,

(S97)

where λ = x+ iy.
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C. Linear instability occurs when the bulk region crosses the imaginary axis

The rightmost point on the edge of the bulk spectrum is given by

λbulk = −1 + (1 + Γ)
√
ϕσ. (S98)

When the bulk of the eigenvalue spectrum first crosses the imaginary axis, we thus have

σ2 =
1

ϕ(1 + Γ)2
. (S99)

Comparing with Eq. (S26), we see readily that this corresponds to the point at which the linear

instability of the generalised Lotka-Volterra dynamics occurs.

S6. MODIFIED INTERACTION STATISTICS

As a result of removing the rows and columns associated with extinct species from the interaction

matrix, the statistics of the reduced interaction matrix elements a′ij differ from those of the original

interaction matrix. We can deduce the modified interaction statistics by evaluating the ensemble

averaged derivatives of the generating functional in Eq. (S37) with respect to λij .

A. Modified mean, variance and second-order correlations

The statistics of the reduced interaction matrix can be obtained from derivatives like those in

Eq. (S43). We denote the modified statistics with a dash. For the modified (scaled) mean, we have

µ′ ≡ 1

ϕN

∑

ij

aijθiθj = ϕµ+
i

ϕN

∑

ij

〈
1

A

δA

δλij

〉 ∣∣∣∣
λ=0

,

= ϕµ+
σ2

ϕ
(1 + Γ)χTM. (S100)

Similarly, for the variance and the second-order correlations between transpose pairs, we obtain

respectively

σ′2 ≡ 1

ϕN

∑

ij

(
aij −

µ′

NS

)2

θiθj =
1

ϕN

∑

ij

(aijθiθj)
2 +O(N−1)

≈ − 1

ϕN

∑

ij

〈
1

A

δ2A

δλ2ij

〉∣∣∣∣
λ=0

= ϕσ2,

Γ′ ≡ 1

ϕN(σ′)2
∑

ij

(
aij −

µ′

NS

)(
aji −

µ′

NS

)
θiθj

≈ − 1

ϕN(σ′)2
∑

ij

〈
1

A

δ2A

δλijδλji

〉 ∣∣∣∣
λ=0

= Γ, (S101)

where the approximation is valid for large N . The removal of extinct species gives rise to additional

correlations between elements that only share one index (as was also pointed out by Bunin [S26]),
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despite no such correlations being present in the original ensemble for the full N ×N interaction

matrix aij . These correlations can be shown to greatly affect the location of outlier eigenvalue [S9].

We find the following correlations between elements that share only a single index

r′ ≡ 1

ϕN

∑

(ijk)

(
aki −

µ′

NS

)(
akj −

µ′

NS

)
θiθjθk

=
σ4

ϕ

[
χ2M

2 + 2ΓχχTM + Γ2qχ2
T

]
− (ϕµ− µ′)2,

c′ ≡ 1

ϕN

∑

(ijk)

(
aik −

µ′

NS

)(
ajk −

µ′

NS

)
θiθjθk

=
σ4

ϕ

[
qχ2

T
+ 2ΓχχTM + Γ2χ2M

2
]
− (ϕµ− µ′)2,

γ′ ≡ 1

ϕN

∑

(ijk)

(
aik −

µ′

NS

)(
akj −

µ′

NS

)
θiθjθk

= − 1

ϕN

∑

(ijk)

〈
1

A

δ2A

δλikδλkj

〉 ∣∣∣∣
λ=0

− (ϕµ− µ′)2

=
σ4

ϕ

[
χTχM + Γχ2

T
q + Γχ2M

2 + Γ2χTχM
]
− (ϕµ− µ′)2,

(S102)

where the notation (ijk) indicates that none of the set i, j and k can take the same value. We

note that the first coefficient (r′) in Eq. (S102) captures correlations between elements in the same

row of the reduced interaction matrix. The second coefficient (c′) describes in-column correlations.

The coefficient γ′ describes correlations between one elements whose first index equals that of the

second index of another element.

Correlations between elements of the reduced interaction matrix that have no indices in common

vanish in the thermodynamic limit, that is

1

(ϕN)2

∑

(ijkl)

(
aij −

µ′

NS

)(
akl −

µ′

NS

)
θiθjθk = − 1

(ϕN)2

∑

(ijkl)

〈
1

A

δ2A

δλijδλkl

〉 ∣∣∣∣
λ=0

− (ϕµ− µ′)2

=
σ4

ϕ2
(1 + Γ)2M2χ2

T
− (ϕµ− µ′)2

= 0. (S103)
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'

FIG. S2: (a) The correlations between elements aij and aki [defined in Eq. (S102)] and (b) the scaled mean

of the reduced interaction matrix elements [see Eq. (S100)]. The remaining system parameters are µ = 0.6,

N = 4000 and the results represented by points were averaged over 10 trials.

B. Non-Gaussian statistics

Let us now consider some of the higher-order statistics of the reduced interaction matrix that

are relevant for the calculation of the eigenvalue spectrum. For example, consider the quantity

S3 =
1

(ϕN)2

∑

ijkl

(aik − µ′/NS )(akl − µ′/NS )(alj − µ′/NS )θiθjθkθl, (S104)

This can be related to the quantities that appear in the series for the resolvent in Eq. (S39)

S3 = −i 1

(ϕN)2

∑

(ijkl)

〈
1

A

δ3A

δλikδλklδλlj

〉 ∣∣∣∣
λ=0

+ ϕ3µ3 − (µ′)3 − 3ϕ2µ2µ′ + 3(µ′)3 + (ϕµ− µ′)
[
(µ′)2 + γ′ + 2ϕσ2Γ + 2(µ′)2

]
, (S105)

where we have

−i 1

(ϕN)2

∑

(ijkl)

〈
1

A

δ3A

δλikδλklδλlj

〉 ∣∣∣∣
λ=0

=
σ4

ϕ

[
(1 + Γ)σ2Γχχ2M

2 + (1 + Γ)Γqχ2
T
σ2χ

+ χTMΓ2(2ϕ+ χ2Γσ2 + χ2qσ
2) + χTM(2Γϕ+ χ2σ2 + χ2Γqσ

2)

]
. (S106)

If the matrix elements zij (and hence a′ij) were Gaussian random variables, then the quantity S3

would vanish. We see that S3 does not vanish, even when the elements of the original interaction

matrix are Gaussian random variables (see Fig. S3 below).
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FIG. S3: Demonstrating that the statistics of the reduced interaction matrix elements are non-Gaussian.

The quantity S3 would be zero if zij were Gaussian random numbers. The remaining system parameters

are µ = 0.6, N = 4000 and the results represented by points were averaged over 10 trials. The results for

Γ = 0.4 are too small to be visible.

S7. SMALLER NUMBERS OF SPECIES

The theory that we developed is formally derived in the thermodynamic limit (N → ∞). In this

section we verify that the predictions from the theory are also a good approximation for realistic

ecological community sizes. To this end, we have conducted simulations for systems with an initial

pool of N = 50 species, noting that this results on surviving communities of approximately 25

species, depending on parameters.

We generally find that, at such values of N , there are small quantitative deviations between the

theory and the simulations, as would be expected. Nevertheless, as seen in Fig. S4, when the full

non-Gaussian theory makes predictions that are substantially different to the Gaussian approach,

then the former remains a far better predictor of the leading eigenvalue. Hence, the conclusion

that it is necessary to take into account non-Gaussian interaction statistics to correctly predict the

stability of a complex ecosystem is also true for communities with a smaller numbers of species

than in the figures in the main text.
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FIG. S4: Analog of Fig. 3 of the main text, but markers are now from simulations for N = 50 (leading to

≈ 25 surviving species). Solid lines are the predictions of our non-Gaussian theory [Eq. (8) in the main

paper]. We also show the predictions λ0 and λ1 from the Gaussian theory (see main paper) for comparison

(dashed lines are λ0, dot dashed lines are λ1). We include Γ = 0, to demonstrate that there is no anomaly for

this choice. The figure demonstrates that our calculation, which takes into account the full non-Gaussian

statistics of the surviving community, remains a better predictor of the outlier eigenvalue and therefore

stability.

S8. VARIATION OF THE LEADING EIGENVALUE WITH Γ

To further verify the formula for the outlier eigenvalue given in Eq. (8) of the main text, we

plot the outlier as a function of Γ in Fig. S5. The figure demonstrates good agreement between

the results of computer simulation and our theory prediction.

FIG. S5: Leading eigenvalue of the reduced interaction matrix as a function of the correlation parameter

Γ for various values of σ, at fixed µ = 0.6. Solid lines are from Eq. (8) in the main text, markers are from

computer simulations (N = 400, averaged over 10 trials.)
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S9. THE EFFECT OF VARYING THE INTRINSIC GROWTH RATE/CARRYING

CAPACITY

A. Generalisation of relations for the order parameters at a stable fixed point

1. Fixed point relations for order paramaters

We now allow for the possibility of different carrying capacities ki for each species. That is,

Eqs. (S1) become

ẋi = xi


ki − xi +

∑

j

aijxj + hi(t)


 , (S107)

where the coefficients ki are drawn independently for each species from a distribution γ(k),

with support contained in the interval [kmin, kmax]. The analysis in Section S1 remains largely

unchanged and we arrive at an alternative version of Eq. (S14)

x⋆ =
k + µM + σ

√
qz

1− Γσ2χ
Θ

(
k + µM + σ

√
qz

1− Γσ2χ

)
, (S108)

where now we have

χ =
1

1− Γσ2χ

∫
dk γ(k)

∫ ∆k

−∞
Dz,

M =

√
qσ

1− Γσ2χ

∫
dk γ(k)

∫ ∆k

−∞
Dz (∆k − z),

1 =
σ2

(1− Γσ2χ)2

∫
dk γ(k)

∫ ∆k

−∞
Dz (∆k − z)2, (S109)

with ∆k =
k+µM
σ
√
q .

2. Solution procedure

We introduce the following shorthand

⟨wr⟩k =
∫
dk γ(k)

∫ ∆k

−∞
Dz (∆k − z)r, (S110)

and use the substitution k = σ
√
q∆k − µM such that dk = σ

√
qd∆k. We assume that the support

of γ(k) ranges from kmin to kmax, and define ∆kmin
and ∆kmax via the relations

kmin = σ
√
q∆kmin

− µM,

kmax = σ
√
q∆kmax − µM. (S111)

The objects ⟨wr⟩k can be written in terms of ∆kmax and ∆kmin
(for given σ2, µ and Γ, as well as

kmin and kmax). This can be seen from

⟨wr⟩k = σ
√
q

∫ ∆kmax

∆kmin

d∆ γ (σ
√
q∆− µM)wr(∆), (S112)
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and the fact that the relations in Eq. (S111) can be used to express q and M in terms of ∆kmax

and ∆kmin

σ
√
q =

kmax − kmin

∆kmax −∆kmin

,

µM =
kmin∆kmax − kmax∆kmin

∆kmin
−∆kmax

. (S113)

We thus deduce that ∆kmax and ∆kmin
are determined (for given µ, σ2,Γ, kmin and kmax) by the

following two equations

σ2 =
⟨w2⟩k

(⟨w2⟩k + Γ⟨w0⟩k)2
,

µ

(
1

kmax
− 1

kmin

)
=

(
∆kmin

kmax
− ∆kmax

kmin

)
1

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
. (S114)

The first of these is analogous to Eq. (S20), and can be obtained directly from Eqs. (S109). The

second relation is derived from subtracting the two relations in Eq. (S111) from one another and

σ
√
q

M
=

1

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
, (S115)

which in turn is obtained from Eqs. (S109).

The values of ∆kmax and ∆kmin
that satisfy Eqs. (S114) can then be substituted into the following

equations to yield the order parameters of interest

χ =⟨w0⟩k + Γ
⟨w0⟩2k
⟨w2⟩k

,

kmin

M
=
∆kmin

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
− µ,

kmax

M
=
∆kmax

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
− µ,

q =

(
M

σ⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k

)2

,

ϕ =⟨w0⟩k,

χT =
1

σ
√
q
⟨w1 −∆kw0⟩k,

χ2 =− 1

σ2q
⟨∆k(w1 −∆kw0)⟩k. (S116)

Only one of the second and third relations is required to find M .

B. Onset of instability

Following similar reasoning to Section S1D1, we see that the mean abundance diverges (M →
∞) when

µ =
∆kmin

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
=

∆kmax

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
. (S117)
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From this, we deduce that at the transition point, ∆kmin
= ∆kmax . This means that the tran-

sition point in the parameter space (µ,Γ, σ) is exactly that given by Eq. (S22). The prediction

that the point in parameter space where the mean abundance diverges remains unaffected by the

introduction of heterogeneous carrying capacities is verified in Fig. S6.

However, in the case of the linear instability described in Section S1D2, things are not as simple.

Following the reasoning in Section S1D2, one arrives at the following simultaneous expressions,

which can be solved to yield ∆kmax and ∆kmin
(and hence all other order parameters) at the point

of instability

⟨w2⟩k = ⟨w0⟩k,

µ

(
1

kmax
− 1

kmin

)
=

(
∆kmin

kmax
− ∆kmax

kmin

)
1

⟨w1⟩k
⟨w2⟩k

⟨w2⟩k + Γ⟨w0⟩k
. (S118)

We note here that in general ϕ = ⟨w0⟩k ̸= 1/2. This means that the linear instability does not

necessarily occur at σ =
√
2/(1 + Γ), as was the case when the carrying capacities were all the

same, i.e. ki = 1.

C. Leading eigenvalues

The expressions for the boundary of the bulk of the eigenvalue spectrum and the outlier eigen-

value in Eqs. (S98) and (S70) respectively are given entirely in terms of the order parameters listed

in Eqs. (2) and (3) of the main text. Eqs. (S98) and (S70) do not change when heterogeneous

carrying capacities are introduced. That is, what one has to do in the case where the carrying

capacities are heterogeneous is to calculate the quantities χ, χT , χ2, M , q and ϕ using Eqs. (S116)

and substitute these values into Eq. (S98) for the edge of the bulk spectrum, and into Eq. (S70)

for the outlier [equivalently into Eq. (8) in the main text].

We demonstrate the efficacy of our theory for reproducing the correct leading eigenvalue of the

reduced interaction matrix in the case of heterogeneous carrying capacities in Fig. S6 below. This

shows that, even when carrying capacities vary between species, the central conclusion of the main

text remains valid. That is, one must take into account the non-Gaussian statistics of interactions

between species if one is to properly predict the stability of the system.
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FIG. S6: Panel (a): Leading eigenvalue of the reduced interaction matrix as a function of σ2 for fixed

µ = 0.6, but now in a model with heterogeneous carrying capacities (analog of Fig. 4 in the main text).

The red solid line is the modified theory using the values from Eq. (S116) in Eq. (8) of the main text

(i.e., it is the non-Gaussian theory for the model with distributed carrying capacities). The dot dashed

and dashed red lines are found by inserting the values in Eq. (S116) into the expressions for λ1 and λ0 in

the main text respectively. The black lines are the corresponding lines from the theory for homogeneous

ki = 1 for all species (as in the main text). The data in panel (a) thus demonstrates that one must take

into account non-Gaussian statistics to correctly predict stability also in the presence of varying carrying

capacities. (b) The edge of the bulk of the eigenvalue spectrum when µ = −5.0. The red line is for varying

carrying capacities, the black line is for ki = 1 for all species. Notably, the instability point in the model

with distributed carrying capacities is no longer given by σ =
√
2

1+Γ as in the case of homogeneous ki = 1.

In both panels, Γ = 0.2. Simulations are for N = 4000, averaged over 10 trials. We used a dichotomous

distribution of carrying capacities, γ(k) = p1δk,k1 + p2δk,k2 , with p1 = 0.9, p2 = 0.1, k1 = 0.1, k2 = 5.0.
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S10. GENERATION OF REDUCED INTERACTION MATRICES WITHOUT

ELIMINATION OF EXTINCT SPECIES IN THE LOTKA–VOLTERRA DYNAMICS

In this section, we discuss the possibility of constructing matrices with the same statistics as the

reduced interaction matrices without running the dynamics of the Lotka–Volterra system and then

eliminating rows and columns of extinct species from the original (full) interaction matrix. In other

words, we construct the ensemble of reduced matrices directly from some prescribed distribution

‘from scratch’ (or ‘bottom up’). We will refer to matrices constructed in this way as ‘imitation’

reduced interaction matrices. By constructing the imitation ensemble, we begin to understand in

more detail the origin of the non-Gaussianity of the reduced interaction matrix and thus why the

universality principle fails to predict its eigenvalues.

In Sec. S10A we first present the general idea of the bottom-up construction. In Sec. S10B

we calculate the statistics of the true interaction matrices conditioned on given values of the

species abundances at a Lotka–Volterra fixed point. These conditional statistics are used in the

construction of the imitation ensemble. Technical details of the method to produce the imitation

matrices are then given in Sec. S10C, before we verify in Sec. S10D that the ensemble of imitation

matrices has the same properties as the ensemble of true reduced interaction matrices. We discuss

and interpret these results in Section S10E.

Throughout the section we write aij for elements of the actual reduced interaction matrix, and

ãij for the elements of an imitation matrix. The size of the imitation matrices is written as Ñ × Ñ .

To construct the ensemble of imitation matrices we use, and develop further, ideas put forward in

Refs. [S27] and [S26].

A. Overall idea

Our approach exploits the fact that an interesting structure becomes apparent in the statistics

of the reduced interaction matrix when the reduced matrix is conditioned on the abundances

of the surviving species. We use this to turn the Lotka-Volterra approach on its head, so to

speak. Instead of drawing a set of interaction coefficients, which then determine the equilibrium

abundances and surviving species in the Lotka–Volterra system, and thus the reduced interaction

matrix, we proceed in reverse. We first draw a set of mock or ‘imitation’ abundances and then a

set of reduced interaction matrix elements conditioned on these abundances.

More specifically, for a fixed set of model parameters µ, σ,Γ of the original Lotka–Volterra

system, we draw a set of imitation abundances {x̃i} from the known distribution of abundances

at a Lotka–Volterra fixed point. Then, we draw imitation interaction matrix elements from a

carefully-constructed Gaussian distribution, whose statistics depend on the imitation abundances.

The precise details are described below in Sec. S10C.

B. Conditional statistics of the elements of the true reduced interaction matrix

In this section we calculate the statistics of elements of the true reduced interaction matrices,

conditioned on given values of the species abundances at a Lotka–Volterra fixed point.
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For real valued α1, β1, α2 and β2, we define the following quantities,

ϑ1(xi) =




1 if α1 < xi ≤ β1,

0 otherwise,
(S119)

and similarly

ϑ2(xi) =




1 if α2 < xi ≤ β2,

0 otherwise.
(S120)

Thus ϑ1(xi) indicates if a particular abundance xi is in the range [α1, β1], and ϑ2(xi) if the abun-

dance is in the interval [α2, β2]. We always assume that β1 ≥ α1 > 0 and β2 ≥ α2 > 0.

As a first step, we now find the statistics of the interaction coefficients of species whose abun-

dances are conditioned to be within the above-stated ranges. That is, we wish to find for example

N E (aij |α1 < xi ≤ β1, α2 < xj ≤ β2) =
1

Nϕ1ϕ2

∑

ij

aijϑ1(xi)ϑ2(xj), (S121)

where we have defined

ϕ1 =
1

N

∑

i

ϑ1(xi) (S122)

as the fraction of species with a fixed-point abundance in the interval [α1, β1], and similarly for

ϕ2. We highlight that N is the number of species in the initial pool, at the point when the

Lotka–Volterra dynamics is started.

A similar calculation to that which was performed in Section S6 yields

NE (aij |α1 < xi ≤ β1, α2 < xj ≤ β2) = µ+
1

ϕ1ϕ2

[
χ
(1)
T M (2)σ2 + Γσ2χ

(2)
T M (1)

]
, (S123)

where we have

ϕ1 =

∫ z(β1)

z(α1)
Dz,

M (1) =

∫ z(β1)

z(α1)
Dz x(z),

χ
(1)
T = − 1√

2πqσ2

[
e−z(β1)

2/2 − e−z(α1)2/2
]

(S124)

with Dz = e−z
2/2/

√
2π. Analogous relations apply for the objects ϕ2,M

(2), and χ
(2)
T . For surviving

species we also have from Eq. (S14),

z(x) = −1 + µM − (1− Γχσ2)x√
qσ

,

x(z) =
1 + µM +

√
qσz

(1− Γχσ2)
. (S125)
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Let us now examine the limit where β1 = α1 + ε and ε ≪ 1. That is to say the condition

ϑ1(xi) = 1 constrains the abundance xi to be in a small interval just above the value xi = α1.

Expanding in ε to linear order we have

ϕ1 ≈
1√
2π
e−z(α1)2/2 (1− Γχσ2)

σ
√
q

ε,

M (1) ≈ α1
1√
2π
e−z(α1)2/2 (1− Γχσ2)

σ
√
q

ε,

χ
(1)
T ≈ 1√

2πqσ2
z(α1)e

−z(α1)2/2 (1− Γχσ2)

σ
√
q

ε. (S126)

Analogous expressions can be found from constraining abundance xj to be in the interval [α2, α2+ε],

with ε≪ 1.

Using Eqs. (S126) and the expression for z(x) in Eq. (S125) in Eq. (S123) one obtains

NE (aij |xi = α1, xj = α2) = µ− α2
1 + µM − (1− Γχσ2)α1

q
− Γα1

1 + µM − (1− Γχσ2)α2

q
.

(S127)

We write this more in more compact form as

NE (aij |xi, xj) = µ− xj
1 + µM − (1− Γχσ2)xi

q
− Γxi

1 + µM − (1− Γχσ2)xj
q

. (S128)

This describes the mean of the element aij in the true reduced interaction matrix, conditioned on

given abundances xi and xj for species i and j. An expression which is in agreement with this was

obtained in Ref. [S27] for the case Γ = 0.

In a similar fashion, we also find

Var(aij |xi, xj) =
σ2

N
,

Cov(aij , aji|xi, xj) =
σ2Γ

N
,

Cov(aij , aik|xi, xj , xk) = − σ2

N2

xjxk
q

,

Cov(aij , aki|xi, xj , xk) = −Γ
σ2

N2

xjxk
q

,

Cov(aji, aki|xi, xj , xk) = −Γ2 σ
2

N2

xjxk
q

. (S129)

We note that the third of the above expressions agrees with the result obtained for the case Γ = 0

in Ref. [S27].

C. Procedure for producing ‘imitation’ reduced interaction matrices

The construction proceeds in two steps.

Step 1:

For a given choice of σ2,Γ, µ we draw a set of Ñ imitation equilibrium species abundances {x̃i}
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independently from the truncated Gaussian distribution of the true abundances [this distribution

results from Eq. (S14)],

P (xi) = Θ(xi)
1

ϕ

1√
2πΣ2

exp

[
(xi −m)2

2Σ2

]
, (S130)

where Θ(·) is the Heaviside function. We have here written xi for the argument to stress that this

is the distribution of the actual fixed-point abundances of the Lotka–Volterra system. We have

also defined

m =
1 + µM

1− Γσ2χ
,

Σ =
σ
√
q

(1− Γσ2χ)
. (S131)

The quantitiesM, q, χ and ϕ are available analytically for the given values of σ2,Γ, µ (see Sec. S1C,

and Refs. [S8, S26]).

While step 1 relies on analytical results for the distribution of fixed-point abundances of the

Lotka–Volterra system, it is important to note that the imitation abundances {x̃i} are obtained

without running the Lotka–Volterra dynamics. Instead they are generated synthetically as inde-

pendent samples from the distribution in Eq. (S130).

Step 2:

For a given set of values x̃1, . . . , x̃Ñ from step 1 we then construct a random matrix of size Ñ ×
Ñ , with elements {ãij} drawn from a joint Gaussian distribution P ({ãij}|{x̃i}) with the same

conditional first and second moments as the ones in a (true) reduced interaction matrix for the

given values of the model parameters σ2,Γ, µ. We calculated these conditional moments in the

previous section (Sec. S10B).

The use of a Gaussian distribution in step 2 is motivated by the discussion in Appendix A

of Ref. [S27]. The {aij} of the original interaction matrix are Gaussian random variables. For

a fixed set of abundances {xi}, the {aij} for surviving species at the fixed point of the GLVEs

are constrained to satisfy the fixed point equations 1 − xi +
∑

j ̸=i aijxj = 0. The distribution of

independent Gaussian random variables that are made to satisfy linear constraints was shown to

be Gaussian, albeit with additional correlations, in Refs. [S27, S28]. It is by virtue of taking into

account that {xi} are also random variables that the resulting distribution of reduced interaction

matrices becomes non-Gaussian.
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To generate the {ãij} in practice, we first draw a set of Ñ2 Gaussian i.i.d. random numbers yij

with mean zero and variance ϕσ2/Ñ . We then construct the elements of the imitation matrices as

follows

ãij =
ϕµij

Ñ
+Ayij +Byji −

Aϕ

Ñq

∑

k ̸=j
yikx̃kx̃j −

ϕΓ2

2ÑqB

∑

k ̸=i
yjkx̃kx̃i

− ϕB

Ñq

∑

k ̸=j
ykix̃kx̃j −

ϕΓ2

2ÑqA

∑

k ̸=i
ykj x̃kx̃i, (S132)

where

A =
1

2

[√
1 + Γ +

√
1− Γ

]
,

B =
1

2

[√
1 + Γ−

√
1− Γ

]
, (S133)

and where we have defined

µij = µ− x̃j
1 + µM − (1− Γχσ2)x̃i

q
− Γx̃i

1 + µM − (1− Γχσ2)x̃j
q

. (S134)

We note that each element ãij is the sum of products of random variables (for example of the type

yjkx̃kx̃i), and hence is manifestly non-Gaussian.

The expression in Eq. (S132) is designed so that the {ãij} have the following properties (which

can be verified by direct calculation),

E (ãij |x̃i, x̃j) =
ϕ

Ñ

(
µ− x̃j

1 + µM − (1− Γχσ2)x̃i
q

− Γx̃i
1 + µM − (1− Γχσ2)x̃j

q

)
,

Var(ãij |x̃i, x̃j) =
ϕσ2

Ñ
+O

(
1

Ñ2

)

Cov(ãij , ãji|x̃i, x̃j) =
ϕσ2Γ

Ñ
+O

(
1

Ñ2

)
,

Cov(ãij , ãik|x̃i, x̃j , x̃k) = −ϕ
2σ2

Ñ2

x̃j x̃k
q

+O
(

1

Ñ3

)
,

Cov(ãij , ãki|x̃i, x̃j , x̃k) = −Γ
ϕ2σ2

Ñ2

x̃j x̃k
q

+O
(

1

Ñ3

)
,

Cov(ãji, ãki|x̃i, x̃j , x̃k) = −Γ2ϕ
2σ2

Ñ2

x̃j x̃k
q

+O
(

1

Ñ3

)
. (S135)

Comparison with Eqs. (S128,S129) demonstrates that the imitation matrices therefore have the

same conditioned statistics as the true reduced interaction matrices in the thermodynamic limit.

(To make the comparison one must keep in mind that the dimension of the reduced matrix is

related to that of the original Lotka–Volterra system via Ñ = ϕN .)

D. Properties of the imitation ensemble

We now test to see whether the imitation matrices also have the same unconditioned statistics,

agnostic of the species abundances, as the true reduced interaction matrices. More precisely, we
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compare the properties of imitation reduced matrices (generated using the procedure described in

Sec. S10C) with the analytical results for the true reduced matrices from Secs. S4 and S6 of this

Supplement.

Fig. S7 shows that the imitation matrix constructed according to Eq. (S132) does indeed produce

the correct mean and correlations of the reduced interaction matrix, given in Eqs. (S100) and (S102)

respectively.

Then, in Fig. S8, we verify that the higher-order moment S3 [c.f. Eq. (S104)] of the true

reduced interaction matrix is captured by the imitation matrices. This demonstrates again that

the ensemble of imitation matrices is non-Gaussian (S3 vanishes in a Gaussian ensemble). We also

see in Fig. S8 that the leading eigenvalue, which as we saw is calculated using an infinite series of

higher-order moments (Sec. S4), is also well-replicated by the imitation matrices.

FIG. S7: Verifying that the imitation reduced interaction matrix has the correct ‘global’ statistics (statistics

not conditioned on the abundances). Solid lines are the analytical results for the true reduced matrices,

given by Eqs. (S100) and (S102). Markers are from imitation matrices generated using the procedure in

Sec. S10C, in particular Eq. (S132). In all panels, µ = 0.6, Ñ = 8000 and results were averaged over 10

trials. Panel (a): The scaled mean µ′ = ÑE(ãij). Panel (b): In-row correlations r′ = Ñ2Cov(ãij , ãik).

Panel (c): In-column correlations c′ = Ñ2Cov(ãij , ãik). Panel (d): Correlations between elements in the ith

row and the ith column γ′ = Ñ2Cov(ãij , ãki). To be able to use logarithmic vertical axes in panels (b) and

(c) we plot the modulus of r′ and c′ respectively.
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FIG. S8: Verifying that the imitation reduced interaction matrix has the correct higher-order statistics

and leading eigenvalue. Solid lines are analytical results for the true reduced interaction matrix, given by

Eq. (S105) and Eq. (S73). Markers are from imitation matrices generated as described in Sec. S10C and

Eq. (S132) in particular. In both panels, µ = 0.6, Ñ = 8000 and results were averaged over 10 trials. Panel

(a): The third moment S3 [defined in Eq. (S104)]. To be able to use a logarithmic vertical axis we plot |S3|.
Panel (b): The leading eigenvalue.

E. Interpretation and further discussion

The results in Figs. S7 and S8 confirm that the ensemble of true reduced interaction matrices can

be generated ‘bottom-up’, without going through the elimination procedure in the Lotka–Volterra

dynamics. We have verified that as well as reproducing the first and second moments of the true

reduced interaction matrices, the imitation matrices also capture higher-order quantities such as

S3 in Eq. (S104), as well as the leading eigenvalue, and thus stability.

Based on these observations, and the manifest non-Gaussianity of the reduced interaction ma-

trices, we can begin to understand why the universality principle does not apply here. There is a

finer structure to the interaction statistics, that becomes apparent when we condition on the abun-

dances of surviving species. It is this structure that gives rise to the higher-order moments in the

ensemble of reduced matrices. Ignoring these moments and making a simple Gaussian assumption

one obtains an incorrect result for the leading eigenvalue [given in Eq. (5) of the main text]. This

is why we say that the universality principle fails in the ensemble of reduced interaction matrices.
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