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Discovering the large-scale topological features in empirical networks is a crucial tool in under-
standing how complex systems function. However most existing methods used to obtain the modular
structure of networks suffer from serious problems, such as the resolution limit on the size of commu-
nities, where smaller but well-defined clusters are not detectable when the network becomes large.
This phenomenon occurs for the very popular approach of modularity optimization, but also for
more principled ones based on statistical inference and model selection. Here we construct a nested
generative model which, through a complete description of the entire network hierarchy at multiple
scales, is capable of avoiding this limitation, and enables the detection of modular structure at levels
far beyond those possible by current approaches. Even with this increased resolution, the method is
based on the principle of parsimony, and is capable of separating signal from noise, and thus will not
lead to the identification of spurious modules even on sparse networks. Furthermore, it fully gen-
eralizes other approaches in that it is not restricted to purely assortative mixing patterns, directed
or undirected graphs, and ad hoc hierarchical structures such as binary trees. Despite its general
character, the approach is tractable, and can be combined with advanced techniques of community
detection to yield an efficient algorithm which scales well for very large networks.

I. INTRODUCTION

The detection of communities and other large-scale
structure in networks has become perhaps one of the
largest undertakings in the science of networks [1, 2]. It
is motivated by the desire to be able to characterize the
most salient features in large biological [3–5], technologi-
cal [6, 7] and social systems [3, 8, 9], such that their build-
ing blocks become evident, potentially giving valuable
insight into the central aspects governing their function
and evolution. At its simplest level, the problem seems
straightforward: Modules are groups of nodes in the net-
work which have a similar connectivity pattern, often
assumed to be assortative, i.e. connected mostly among
themselves and less so with the rest of the network. How-
ever, when attempting to formalize this notion, and de-
velop methods to detect such structures, the combined
effort of many researchers in recent years has spawned a
great variety of competing approaches to the problem,
with no clear, universally accepted outcome [2]. The
method which has perhaps gathered the most widespread
use is called modularity optimization [10] and consists in
optimizing a quality function which favors partitions of
nodes where the fraction of internal edges inside each
cluster is larger than expected given a null model, taken
to be a random graph. This method is relatively easy
to use and comprehend, works well in many accessible
examples, and is capable of being applied in very large
systems via efficient heuristics [11, 12]. However it also
suffers from serious drawbacks. In particular it fails to
detect clusters with size below a given threshold [13, 14],
which increases with the size of the system as ∼

√
E,

where E is the number of edges in the entire network.
This limitation is independent of how salient these rela-
tively smaller structures are, and makes this potentially
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very important information completely inaccessible. Ad-
ditionally, results obtained with this method tend to be
degenerate for large empirical networks [15], for which
many different partitions can be found with modularity
values very close to the global maximum. In these situa-
tions the method fails in giving a faithful representation
of the actual large-scale structure present in the system.
The method is also incapable of separating actual struc-
ture from those arising due to random fluctuations of the
null model, and it even finds high scoring partitions in
fully random graphs [16]. More recently, increasing ef-
fort has been spent on a different approach based on the
statistical inference of generative models, which encode
the modular structure of the network as model parame-
ters. This approach offers many advantages over many
existing methods, including modularity, since it is more
firmly grounded on well known principles and methods
of statistical analysis. Under this general framework, one
could hope to overcome some of the limitations existing in
more ad hoc methods, or at least make any intrinsic lim-
itations easier to understand in light of more robust con-
cepts [17–20]. Perhaps the most used generative model
used for this purpose is the stochastic block model [21–
36], which groups nodes in blocks with arbitrary proba-
bilities of connections between them. This very simple
definition already does away with the restriction of only
considering purely assortative communities, and accom-
modates many different patterns, such as core-periphery
structures and bipartite blocks, as well as a straightfor-
ward generalizations to directed graphs. The issue of de-
tectability of well defined clusters amounts in large part
to the issue of model selection based on principled crite-
ria such as minimum description length (MDL) [20, 37]
or Bayesian model selection (BMS) [38–42]. These ap-
proaches allow the selection of the most appropriate num-
ber of blocks, and avoid the detection of spurious commu-
nities. However, as it turns out, at least one of the limi-
tations of modularity maximization is also present when
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doing model selection, namely the resolution limit men-
tioned above. As has been recently shown in Ref. [20],
when using MDL, the maximum number of detectable
blocks scales with

√
N , where N is the number of nodes

in the network, which is very similar to the modularity
optimization limit. However, in this context, this limita-
tion arises out of the lack of knowledge about the type of
modular structure one is about to infer, and the a priori
assumption that all possibilities should occur with the
same probability. Here we define a more refined method
of model selection, which consists in a nested hierarchy
of stochastic block models, where an upper level of the
hierarchy serves as prior information to a lower level.
This dramatically changes the resolution of the model
selection procedure, and replaces the characteristic block
size of

√
N in the non-hierarchical model to by much a

smaller value which scales only logarithmically, enabling
the detection of much smaller blocks in very large net-
works. Furthermore, the model provides a description of
the network in many scales, in a complete model encap-
sulating its entire hierarchical structure at once. It gener-
alizes previous methods of hierarchical community detec-
tion [43–48] in that it does not impose specific patterns
such as dendograms or binary trees, in addition to allow-
ing arbitrary modular structures as the usual stochastic
block model, instead of purely assortative ones. Further-
more, despite its increased resolution, the approach at-
tempts to find the simplest possible model which fits the
data, and is not subject to overfitting, and hence will not
detect spurious modules in random networks. Finally,
the method is fully non-parametric, and can be imple-
mented efficiently, with a simple algorithm which scales
well for very large networks.

We start in the next section with the definition of the
model and then we discuss the model selection procedure
based on MDL. We then move to the analysis of the reso-
lution limit, and proceed to define an efficient algorithm
for the inference of the nested model, and we finalize with
the analysis of synthetic and empirical networks, where
we demonstrate the quality of the approach. We then
conclude with an overall discussion.

II. THE HIERARCHICAL MODEL

The original stochastic block model ensemble [21–24]
is composed of N nodes, divided into B blocks, with ers
edges between nodes of blocks r and s (or, for conve-
nience of notation, twice that number if r = s). Here we
may differentiate between two very similar model vari-
ants: 1. The quantities ers are themselves the parameters
of the model; 2. The parameters are the probabilities prs
that an edge exists between two nodes of the respective
blocks, such that the quantities 〈ers〉 = nrnsprs hold
on average. Both are equally valid generative models,
and as long as these quantities are sufficiently large, they
should be equivalent (see [49] and below). Here we stick
with the first variant, since it makes the following formu-
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FIG. 1. Example of a nested stochastic block model with
three levels, and a generated network at the bottom. The
top-level structure describes a core-periphery network, which
is further subdivided in the lower levels.

lation more convenient. We also consider a further vari-
ation called the degree-corrected block model [32], which
is defined exactly as the traditional model(s) above, but
one additionally specifies the degree sequence {ki} of the
graph as an additional set of parameters (again, these
values can be the parameters themselves, or they can
be constrained on average [49]). The degree-corrected
version, although being a relatively simple modification,
yields much more convincing results on many empirical
networks, since it is capable of incorporating degree vari-
ability inside each block.

The nested version which we define here is based on the
simple fact that the edge counts ers themselves form a
block graph, where the nodes are the blocks, and the edge
counts are the edge multiplicities between each node pair
(with self-loops allowed). This multigraph may also be
constructed via a generative model of its own. If we chose
a stochastic block model again as a generative model, we
obtain another smaller block multigraph as parameters
at a higher level, and so on recursively, until we finally
reach a model with only one block. This forms a nested
stochastic block model hierarchy, which describes a given
network at several resolution levels (see Fig. 1).

Note that in order to describe the observed network
which is generated by the deepest level of the hierarchy
(e.g. l = 1 in Fig. 1), it is not necessary to involve in-
formation on the upper layers. Hence, in order to fit the
nested block model to observed data, one may simply
fit the flat, non-hierarchical model first, and obtain the
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remaining hierarchy at later steps. Indeed this a simple
way to proceed if one knows how many levels the hierar-
chy should have, as well as the number of blocks in each
level. However, the full advantage of the nested approach
lies precisely in the case when this type of information
is not known, and all one has is the observed network.
In this case — which is a much more likely scenario in
practice — the nested model provides a way of detecting
regularities in multiple scales. Although one is always op-
erating with a flat model at the deepest layer, the knowl-
edge of the upper layers allows one to infer deeper, and
detect more detailed block structures, which would oth-
erwise be discarded. This occurs by the mechanism of
statistical model selection in the presence of prior infor-
mation on the model parameters. The more complete
is the available prior information on the model, further
information on the parameters can be inferred from the
data. The nested model exploits the fact that the model
parameters themselves also form a multigraph, to which
the same generative model can be fitted, so that the in-
ference of an upper level serves as prior information to a
lower level. This comes at the expense of the inclusion of
hyperparameters describing the upper level itself, which
in turn can be described by another generative model,
forming a recursive nested block model hierarchy until
no parameters are left to describe. In this way, one is
able to improve the model selection process without in-
troducing a single additional parameter. The result is a
more refined model selection scheme which performs bet-
ter than the non-hierarchical variant both in synthetic as
well as in empirical data.

Despite its more elaborate formulation, this model re-
mains tractable, and it is possible to apply it to very large
networks, in a fully non-parametric manner, as discussed
below. Furthermore, it generalizes cleanly the flat vari-
ants, which correspond simply to an hierarchy with only
one level. It also does not impose any connection pattern
(e.g. assortative or dissortative block structures), and is
not restricted to any specific hierarchical form, such as
binary trees or dendograms. In the following, we describe
the maximum likelihood method to infer the multilevel
partitions, and the model selection process based on the
minimum description length principle, and compare it
with Bayesian model selection.

In the analysis we focus on undirected networks, but
everything is straightforwardly applicable to directed
networks as well. In the supplemental material we
present a summary of the relevant expressions for the
directed case.

A. Module Inference

The inference approach consists in finding the best par-
tition {bi} of the nodes, where bi ∈ [1, B] is the block
membership of node i, in the observed network G, such
that the posterior likelihood P(G|{bi}) is maximized.
Since each graph with the same edge counts ers occur

with the same probability, the posterior likelihood is sim-
ply P(G|{bi}) = 1/Ω({ers}, {nr}), where ers and nr are
the edge and node counts associated with the block par-
tition {bi}, and Ω({ers}, {nr}) is the number of different
network realizations. Hence, maximizing the likelihood
is identical to minimizing the ensemble entropy [49, 50]
S({ers}, {nr}) = ln Ω({ers}, {nr}).

For the lowest level of the hierarchy (which models
directly the observed network) we have a simple graph,
for which the entropies can be computed as [49]

St =
1

2

∑

rs

nrnsHb

(
ers
nrns

)
, (1)

for the traditional blockmodel ensemble and,

Sc ' −E −
∑

k

Nk ln k!− 1

2

∑

rs

ers ln

(
ers
eres

)
, (2)

for the degree corrected variant, where E =
∑

rs ers/2
is the total number of edges, Nk is the total number of
nodes with degree k, er =

∑
s ers is the number of half-

edges incident on block r, Hb(x) = −x lnx−(1−x) ln(1−
x) is the binary entropy function, and it was assumed
that nr � 1. Note that only the last term of Eq. 2 is in
fact useful for the finding the block partition, since the
others remain constant. However the full term is useful
for comparing the models against each other when doing
model selection, as discussed below.

For the upper level multigraphs the entropy can also
be computed [49], and it takes a different form

Sm =
∑

r>s

ln
((

nrns

ers

))
+
∑

r

ln
((

((nr
2 ))

err/2

))
, (3)

where
((

n
m

))
=
(
n+m−1

m

)
is the number of m-combinations

with repetitions from a set of size n. Note that we no
longer assume that nr � 1, since at the upper levels the
number of nodes become arbitrarily small.

At each level l ∈ [0, L] in the hierarchy there are Bl−1
nodes which are divided into Bl blocks (with Bl ≤ Bl−1),
were we set B−1 ≡ N . The edge counts at level l are
denoted as elrs, and the block sizes as nlr. Therefore we
must have that

∑
r n

l
r = Bl−1 and

∑
rs e

l
rs/2 = E, i.e.

the total number of nodes decreases in the upper levels,
but the total number of edges remains the same. The
combined entropy of all layers is given then by

Sn = St/c({e0rs}, {n0r}) +

L∑

l=1

Sm({elrs}, {nlr}). (4)

The full generative model corresponds to a nested se-
quence of network ensembles, where each sample from a
given level generates another ensemble at a lower level.
The entropy in Eq. 4 represents the amount of informa-
tion necessary to encode the decision sequence which,
starting from the topmost model, selects the observed
network among all possible branches in the upper levels.
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Whenever both the number of levels, and the number
of blocks Bl of each level is know, the best multilevel
partition is the one which minimizes Sn. However such
information regarding the size of the model is most often
not available, and needs to be inferred from the data as
well. Using Eq. 4 for this purpose is not appropriate,
since minimizing it across all possible hierarchies leads
to a trivial and meaningless result where Bl = N for all
l. Instead, one must employ some form of Occam’s ra-
zor, and select the simplest possible model which best
describes the observed data without increasing its com-
plexity. We present such an approach in the next section.

B. Model selection

A method which directly formalizes the Occam’s ra-
zor principle is known as minimum description length
(MDL) [51, 52], where one specifies the total amount of
information necessary to described the data, which in-
cludes not only the sample but the model parameters as
well. The description length for the model above is

Σ = Lt/c + Sn, (5)

where Lt/c is the amount of information necessary to
describe the model. In a given level l of the hierarchy, the
information required to describe the model parameters
{elrs} is given by the entropy Sm (Eq. 3) of the model
in level l + 1. The only missing information is how to
partition the nodes of the current level into Bl blocks.
The total number of partitions with the same block sizes
{nlr} is given by Bl−1!/

∏
r n

l
r!, and the total number of

different block sizes is
((

Bl

Bl−1

))
. Hence the total amount

of information necessary to describe the block partition
of level l is

Ll
t = ln

((
Bl

Bl−1

))
+ lnBl−1!−

∑

r

lnnlr!, (6)

and the total description length is Lt =
∑L

l=0 Ll
t. Note

that this is different than the choice made in Refs. [20, 37]
which considered all possible B

Bl−1

l partitions to be
equally likely, and hence the necessary amount of infor-
mation as Bl−1 lnBl. This choice implicitly assumes that
all blocks have equal sizes, and offers worse description
when this is not the case. Note that for Bl−1 � 1 we
have

Ll
t ' Bl−1H({nlr/Bl−1}), (7)

whereH({pi}) = −∑i pi ln pi is the entropy of the distri-
bution {pi}. Therefore, for uniform blocks nlr = Bl−1/Bl

we recover asymptotically the value Ll
t ' Bl−1 lnBl.

However the value of Eq. 6 can be much smaller for
non-uniform partitions. This choice has important con-
sequences for the resolution of relatively small blocks, as
will be seen below.

For the degree-corrected version we still need to include
the information necessary to describe the degrees at the
lowest level,

Lc = Lt −N
∑

k

pk ln pk. (8)

Since the degree distribution of the observed network is
a constant during the inference process, this extra term
can be discarded. However, the full value is useful when
comparing both model variants against each other, or
with other classes of models.

It is easy to see that if one has a flat L = 1 hierar-
chy, with {Bl} = {B, 1}, the description length of the
non-hierarchical model is recovered [20], e.g. for the tra-
ditional model we have ΣL=1 = LL=1 + St, with

LL=1 = ln
((

((B
2 ))
E

))
+ lnN !−

∑

r

lnnr!, (9)

where the only difference is that here we are using the
improved partition description length of Eq. 6. Therefore
the nested generalization fully encapsulates the flat ver-
sion, such that min Σ ≤ min ΣL=1, i.e. the nested model
can only provide a shorter or equal description length of
the observed network.

The MDL principle predicates that whenever the hi-
erarchy size itself needs to be inferred, one should min-
imize Eq. 5, instead of Eq. 4 directly. However MDL is
one of the many principled methods one could use to do
model selection, which include e.g. Bayesian model se-
lection via integrated likelihood [29, 38, 39, 41, 42, 53],
log-likelihood ratios [54] or more approximative methods
such as Bayesian information criterion (BIC) [55] and
Akaike information criterion (AIC) [56]. If any two of
such methods are derived from equivalent assumptions,
one would expect them to deliver compatible results. In
the following we make a comparison of the MDL ap-
proach with Bayesian model selection via integrated like-
lihood (BMS), since it is non-approximative and can be
computed exactly for the stochastic block model. We
show that under compatible assumptions these two meth-
ods deliver the exact same results. We compare the re-
sults obtained with non-hierarchical MDL/BMS and the
nested model presented, and show that it yields a higher
quality model selection criterion, which detects the cor-
rect number of blocks for sparse networks, without be-
ing overconfident. Based on this analysis we are capable
of deriving the optimum number of blocks given a net-
work size, and we show that the nested model does not
suffer from the resolution limit which hinders the non-
hierarchical approaches.

1. Bayesian Model Selection (BMS)

For the purpose of performing BMS, we evoke the most
usual definition of the stochastic block model ensemble,
where one defines as parameters the probabilities prs that
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an edge exists between two nodes belonging to blocks r
and s. The posterior likelihood of observing a given graph
with a block partition {bi} and model parameters {prs}
is

P(G|{bi}, {prs}, B) =
∏

rs

p
ers
2

rs (1− prs)
nrnr−ers

2 . (10)

The inference procedure consists in, as before, maximiz-
ing this quantity with respect to the parameters {prs}
and the block partition {bi}. It is easy to see that if
one maximizes Eq. 10 with respect to {prs}, one re-
covers max{prs} lnP(G|{bi}, {prs}, B) = −St, given in
Eq. 1, so indeed these models are equivalent. However
this does not provide a means for model selection, since
models with larger number of blocks B will invariably
posses a larger likelihood. Instead, the Bayesian model
selection approach is to consider the joint probability
P(G, {bi}, {prs}, {pr}|B) of observing not only the graph,
but also the partition {bi}, the model parameters {prs}
as well as the parameters {pr} which control the prob-
ability of each partition {bi} being observed, which is
given by

P({bi}|{pr}, B) =
∏

r

pnr
r . (11)

This invariably leads to the inclusion of prior probabili-
ties of observing the model parameters, P({prs}|B) and
P({pr}|B). Now, instead of finding the model parame-
ters which maximize this quantity, we compute the inte-
grated likelihood [38, 42, 53],

P(G, {bi}|B) =

∫
dprsdpr P(G, {bi}, {prs}, {pr}|B)

(12)

=

∫
dprs P(G|{bi}, {prs}, B)P({prs}|B)×

∫
dprP({bi}|{pr})P({pr}|B)

(13)
= P(G|{bi}, B)× P({bi}|B). (14)

By maximizing P(G, {bi}|B), instead of Eq. 10, one
should avoid overfitting the data, since the larger mod-
els with many parameters are dominated by a majority
of choices with fit the data very badly, and hence have
a smaller contribution in the integral of Eq. 12. There-
fore the maximization of the integrated likelihood also
corresponds to an application of Occam’s razor, and one
should expect it to deliver results compatible to MDL.
However, in practice things are more nuanced, since the
value of Eq. 12 is heavily dependent on the choice of
priors P({prs}|B) and P({pr}|B). For the block par-
titions themselves, this choice is more straightforward.
Since one wants to be agnostic with respect to what
block sizes are possible, one should choose a flat prior
P({pr}|B) = Dirichlet({αr}), with αr = 1 so that all

counts are equally likely. The integral of Eq. 13 is then
computed as

lnP({bi}|B) = − ln
((

B
N

))
− lnN ! +

∑

r

lnnr!, (15)

which is identical to the partition description length of
Eq. 6, i.e. lnP({bi}|B) = −L0

t .
For the block probabilities, on the other hand, the sit-

uation is more subtle. A common choice is the flat prior
P({prs}|B) = 1 [31, 38, 40–42]. This choice is agnostic
with respect to what block structures are expected, and
it is also practical, since the integral can be evaluated
exactly [31, 42],

lnP(G|{bi}, B) = −
∑

r>s

ln

(
nrns
ers

)
+ ln (nrns + 1)

−
∑

r

ln

(
n2r
err/2

)
+ ln

(
n2r/2 + 1

)

(16)

' −1

2

∑

rs

nrnsHb

(
ers
nrns

)
− (B + 1)

∑

r

lnnr, (17)

where the approximation in Eq. 17 was made assum-
ing nr � 1, and Hb(x) is the binary entropy func-
tion. However, there is one important issue with this
approach. Namely, there is a strong discrepancy between
the models generated by the flat prior P({prs}|B) = 1
and most observed empirical networks. Specifically, typ-
ical parameters with prs = 1/2 sampled by this prior
will result in dense networks with average degree 〈k〉 =∑

rs prsnrns/N = N/2. However, most large empirical
networks tend to be sparse, with an average degree which
is many orders of magnitude smaller than N . Hence, as
N becomes large, most observed networks will lie in a
vanishingly small portion of the parameter space pro-
duced by this prior. A better choice would constraint
the average degree to something closer to what is ob-
served in the data, but at the same time being otherwise
non-informative regarding the block structure. A choice
such as P({prs}|B) ∝ δ(

∑
rs prsnrns − 2E), where E is

the number of edges in the observed network seems ap-
propriate, but the integral in Eq. 13 becomes difficult
to solve. Instead, an easier approach is to modify the
model sightly, so that the average degree is implicitly
constrained. Here we consider the model variant where
the number of edges E is a fixed parameter, and each
sampled edge may land between any two nodes belong-
ing to blocks r and s with probability qrs, and we have
therefore that

∑
r≥s qrs = 1. The full posterior likelihood

of this model is

P(G|{bi}, {qrs}, E,B) =
E!

Ω({ers}, {nr})

∏
r≥s q

mrs
rs∏

r≥smrs!
,

(18)
where Ω({ers}, {nr}) is, as before, the number of
different graphs with the same block partition and
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edge counts, and mrs = ers if r 6= s or err/2
otherwise. By maximizing Eq. 18 with respect to
{qrs}, one obtains max{qrs} lnP(G|{bi}, {qrs}, E,B) '
− ln Ω({ers}, {nr}) = −St, as long as mrs � 1 or
mrs = 0 , so it also is equivalent to the previous mod-
els in this limit. With this re-parametrization, the av-
erage degree remains fixed independently of the choice
of prior. Therefore we may finally use a flat prior
P({qrs}|B) = Dirichlet({αrs = 1}), without the risk of
the graphs becoming inadvertently dense, and again the
integrated likelihood can be computed exactly,

P(G|{bi}, B) =

∫
dqrs P(G|{bi}, {qrs}, E,B)P({qrs}|B)

(19)

=
[
Ω({ers}, {nr})×

((
((B

2 ))
E

))]−1
. (20)

By inserting Eq. 20 into Eq. 14, and comparing with
equation Eq. 9, we see that lnP(G, {bi}|B) = −ΣL=1,
and we conclude reassuringly that the MDL approach is
fully equivalent to BMS when all model constraints are
compatible. In fact, even in the dense case, although
not quite the same, the (dense) BMS and MDL penal-
ties are very similar. If one assumes N � B2, E ∝ N2,
and equal block sizes nr = N/B, both penalties become
∼ B(B+1) lnN +N lnB. Therefore it seems that what-
ever differences arising from the two approaches stem
simply from nuances in the choice of prior probabilities.
This comparison also allows us to interpret the nested
block model as an hierarchical Bayesian approach, where
the priors P({qrs}|B) are replaced by a nested sequence
of priors and hyperpriors, so that their integrated likeli-
hood matches the description length defined previously.
What remains to be seen, is to what extent these dif-
ferent choices can affect the results of the model selec-
tion in practical situations. This analysis, which is pre-
sented in the next session, allows us also to derive limits
on the detectability of modular structures according to
each method, and tackle the so-called “resolution limit”
problem, in which perceivedly well-pronounced blocks are
merged together during model selection.

2. Module detectability and the “resolution limit”

The general problem of module detectability can be
formulated as follows: Suppose we generate a network
with a given parameter set. To what extent can we re-
cover the planted parameters by observing this single
sample from the model? The answer is conditional to
the amount of prior knowledge one has. If the num-
ber of blocks B is known beforehand, the remaining task
is simply to classify the nodes in one these B classes.
This problem has been shown to exhibit a detectability-
indetectability phase transition [17, 18]: If the existing
block structure is too weak, it becomes impossible to in-
fer the correct partition with any method, despite the

fact that the model parameters deviate from that of a
fully random graph. On the other hand, if the block
structure is sufficiently strong, it is possible to detect the
correct partition with a precision which increases as the
block structure becomes stronger. Another situation is
when one does not know the correct number B, which
is arguably more relevant in practice. In this case, in
addition to the node classification, one needs to perform
model selection. Ideally, one would like to find the cor-
rect B value whenever the corresponding partition is de-
tectable. However, in situations where the correct parti-
tion is only partially detectable, i.e. the inferred partition
is positively but weakly correlated with the true model,
an application of Occam’s razor may actually choose a
simpler model, with smaller B, with a comparable corre-
lation with the true partition. Hence, if we lack knowl-
edge of the model size B, there will be situations where
the true partition will be more poorly detected, when
compared to the case where we have this information.
This can be clearly illustrated with a very simple exam-
ple known as the Planted Partition (PP) model [57]. It
corresponds to an assortative block structure given by
ers = 2E[δrsc/B+(1−δrs)(1−c)/B(B−1)], nr = N/B,
and c ∈ [0, 1] is a free parameter which controls the
assortativity strength. For this model, if we have that
N/B � 1, it can be shown that the detectable phase ex-
ists for 〈k〉 > [(B−1)/(cB−1)]2 [17–19]. Let us make the
situation even simpler and consider the strongest possible
block structure with c = 1, i.e. B perfectly isolated as-
sortative communities with N/B nodes. In this case the
detectability threshold lies at 〈k〉 = 1. Therefore for any
〈k〉 > 1, we should be able to detect all B blocks, with a
precision increasing with 〈k〉, if we knew we had B blocks
to begin with. If we do not know this, we may apply any
of the model selection methods described above to obtain
the best value of B. For simplicity let us assume that for
the correct value of B ≡ Btrue the true partition is per-
fectly detected, such that St ' −E lnB, ignoring addi-
tive constants which are irrelevant at this point. If a value
of B > Btrue is used, we assume that the inferred par-
tition corresponds to regular subdivisions of the planted
one, such that the entropy remains approximately un-
changed St ' −E lnBtrue. For B < Btrue, the blocks
are uniformly merged together, so that St ' −E lnB.
Hence we may write the expected value of the minimum
description length in the non-hierarchical model by sum-
ming St = −E ln min(B,Btrue) with Eq. 9. Similarly, an
expression for the dense integrated likelihood is obtained
by including the same entropy expression as the first term
of Eq. 17 and nr = N/B in the second. For the nested
version of model, we assume a regular hierarchical tree,
with a fixed branching ratio σ, with Bl = σL−l, so that
Eq. 5 becomes

Σ '
((σ

2

)) B

σ − 1
lnE +

σ

2
B lnB +N lnB

− E ln min(B,Btrue), (21)
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where Bl � σ was assumed, and B ≡ B0. One may
compare these criteria against each other in their capac-
ity of recovering the planted value of B, by finding the
extremum of each function. In Fig. 2 it is shown the opti-
mum values of B for a model with N = 104 and B = 100,
as well as the results for the direct minimization of the
corresponding exact quantities for actual network realiza-
tions. We also include the comparison with a dense BMS
version where the partition likelihood term is omitted in
Eq. 14, i.e. P({bi}|B) = 1, as was done in Refs. [31, 40].
We see that the dense BMS criterion fails to detect the
correct model size for sparser networks, which is in ac-
cordance with its inadequacy in this region. The hier-
archical model provides, as expected, the best results,
and detects the correct model for the sparsest networks.
The incomplete BMS criterion is clearly overconfident for
sparse networks, and detects B > 1 structures even when
the model lies below the detectability threshold 〈k〉 = 1,
hence this shows that the partition likelihood should not
be simply discarded [58]. Both MDL and dense BMS fail
to detect anything for 〈k〉 < 2, which corresponds to a
strong threshold [59], which interestingly lies above the
strict detectability limit at 〈k〉 = 1. This corresponds to a
region where detectability is possible, but only if the true
value of B is known (or if a more refined model selection
criterion exists). Note that the incomplete BMS crite-
rion performs better in the region 1 < 〈k〉 < 2, but this
is perhaps better interpreted as a byproduct of its over-
all overconfidence for very sparse networks. Note that
all criteria eventually agree on the correct value if 〈k〉
is made sufficiently large, which corresponds to the in-
tuitive notion that the detection problem becomes much
easier for dense networks.

A prominent problem in the detectability of block
structures via other methods such as modularity opti-
mization [10] is when modules are merged together, re-
gardless of how strong the community structure is per-
ceived to be. For the modularity-based approach, when
considering a maximally modular network, similar to
the PP model with c → 1, but with the additional re-
striction that the graph remains connected, it has been
shown [13] that modules are merged together as long
as B >

√
E. This phenomenon is considered counter-

intuitive, and has been called the “resolution limit” of
community detection via this method. As it happens,
this problem does not only occur for modularity-based
methods, but also if one does statistical inference based
on MDL. For the non-hierarchical model, it can be shown
that according to this criterion the optimal number of
blocks scales as B∗ ' µ(〈k〉)

√
N , where µ(x) is an in-

creasing function [20]. Therefore if the planted number
exceeds this threshold, blocks will be merged together,
despite the fact that the block structure is detectable
with arbitrary precision if one knows the correct value of
B, and it sufficiently exceeds the detectability threshold
〈k〉 > 1 of the PP model. This means that the true pa-
rameters of the model no longer can be used to compress
the data. This is a direct result of the assumption that
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FIG. 2. Model selection results for a PP model with N = 104,
B = 100 and fully isolated blocks (c = 1), using the model
selection criteria described in the text. The top panel shows
the inferred value of B versus the average degree 〈k〉 in the
network. The solid lines show the theoretical value according
to each criterion, and the data points are direct optimiza-
tion of the corresponding quantities for actual generated net-
work, averaged over 40 independent realizations. The bottom
panel shows the normalized mutual information (NMI) be-
tween the inferred and planted partitions. The dashed line
marks the threshold 〈k〉 = 1 where inference becomes impos-
sible for N →∞.

all possible block structures of a given size are equally
possible, and the number of such models become very
large, with a model description length scaling roughly
with ∼ B2 lnE + N lnB. In the presence of additional
assumptions about the model, such as the fact that one
is dealing with the PP model, instead of a more general
block structure, this can in principle be improved. How-
ever, in most practical situations such assumptions can-
not be made. One main advantage of the nested model,
is that this limit can be overcome, without requiring such
prior knowledge. The description length via the nested
model for the maximally modular network above is given
by Eq. 21 with Btrue = B. As can be seen, this equation
has only log-linear dependencies on the model size B, in-
stead of the quadratic one present in the flat MDL. The
result of this is that if one finds the value of B∗ which
minimizes the nested description length, one obtains the
scaling

B∗ ∼ N

lnN + ln lnN
∼ N

lnN
, (22)

for sufficiently large N . This is a significant improve-
ment, since the maximum number of detectable blocks
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FIG. 3. Parameter region where two isolated blocks with
ec/2 internal nodes are detectable as separate blocks [shown
schematically in panel (c)], as a function of the average block
size N/B, and depending on (a) the average degree 〈k〉 with
N = 105 and (b) the number of nodes N with 〈k〉 = 20. The
dashed curves show the boundaries for the non-hierarchical
block model, and the solid lines for the hierarchical variant.
The line segments on the right hand side of the plots show
the detectability threshold for modularity [13], e∗c =

√
2E.

The points marked with stars (?) correspond to the maxi-
mum value of B which is detectable in the remaining network
with the non-hierarchical model, and the dotted line shows
the same quantity for various 〈k〉 values. (d) The hierarchi-
cal construction used to decide if the two isolated blocks are
merged together with the nested model.

grows almost linearly with the number of nodes. Thus,
a characteristic detectable block size N/B ∼

√
N is re-

placed by a much smaller value N/B ∼ lnN , which al-
lows for a precise assessment of small communities even
in very large networks.

It is possible to understand more precisely the origin
of the improvement by considering a related problem,
which is the detection of blocks which are much smaller
than the remaining network. With the modularity ap-
proach, another facet of the resolution limit manifests
itself when two blocks are merged together, despite the
fact that if they are considered in isolation they would
be kept separate. Here we consider this problem by us-
ing a slightly modified scenario than the one proposed
in [13], which is a network composed of two fully iso-
lated blocks, each with ec/2 internal edges and nc nodes,
and a remaining network with N nodes, E edges, aver-
age degree 〈k〉 = 2E/N and an arbitrary topology [see
Fig. 3(c)]. We may decide if these blocks are merged
together by considering the difference in the description
length. The entropy difference for the merge is simply
∆St = er ln 2 (where we assume er � n2r, but the dense
case can be computed as well, with no significant differ-
ence in the result). For the flat block model we have
∆Lflat = LL=1(E + ec, N + 2nc, B − 1, {nr} ∪ {2nc}) −

LL=1(E+ec, N+2nc, B, {nr}∪{nc, nc}), computed using
Eq. 9. For this case, the point at which the merge hap-
pens, ∆Lflat+∆St = 0, will depend not only on the values
of E and N , but also on the average block size N/B of
the remaining network, as can be seen in Fig. 3(a) and
(b). As the number of blocks in the remaining network
approaches the maximum detectable value, B∗ ∼

√
N ,

the more difficult it becomes to resolve the smaller blocks.
The detectable region recedes further with increasing 〈k〉,
and also with the number of nodes in the remaining net-
work as e∗c ∼

√
N . Hence, the denser or larger the re-

maining network is, the harder it becomes to detect the
smaller blocks with the flat variant of the model. In Fig. 3
are also shown the values of e∗r for which modularity also
fails to separate the blocks (if one considers that they
are connected to themselves and to the rest of the net-
work by single edges [60]), which are overall compatible
with the flat MDL criterion. The situation changes sig-
nificantly with the nested model. To consider the merge,
we assume an optimal block hierarchy which splits at the
top into two branches, the left one containing the two
smaller blocks, and the right one containing the remain-
ing network and its arbitrary hierarchical structure (see
Fig. 3(d)). To consider the merge, we need to compute
the description length only at the lowest level, since the
rest remains unchanged. By computing the difference
via Eq. 4 and Eq. 6, after some manipulations we obtain
∆Σnested = ∆St + lnnc − ln

((
3
ec

))
+ ln(B + 1)− ln(B +

N − 1) − ln(B1 + B + 2), with B = B0. Note that this
expression is independent of E, and hence the density of
the remaining network cannot influence the merging de-
cision. Since B1 ≤ B, and assuming B � 1, we obtain
∆Σnested ' ∆St + lnnc− ln[(ec + 2)(ec + 1)]− ln(B+N),
and hence the dependence on either N or B is again
only logarithmic, e∗c ≈ [ln(B + N) − lnnc]/ ln 2, as
shown in Fig. 3(b). With this example one can notice
that the nested model is capable of compartmentaliz-
ing the network at the upper levels, such that the lower
level branches can become almost independent from each
other. This means that in many practical situations one
can fully overcome the resolution limit, without abandon-
ing a global model which describes the whole network at
once.

In the following section we specify an efficient algo-
rithm to infer the parameters of the nested block model in
arbitrary networks, and we test its efficacy in uncovering
the multilevel structure of synthetic as well as empirical
networks.

III. INFERENCE ALGORITHM

Individually, any specific level l of the hierarchical
structure is a regular block model, and hence the clas-
sification of the Bl−1 nodes of this level into Bl blocks
can be done via well-established methods, such as Monte
Carlo [20, 40], simulated annealing [61], or belief prop-
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agation [17, 18, 54]. Here we use the method described
in Ref. [62], which is an agglomerative heuristic which
provides high-quality results, while being unbiased with
respect to the types of block structure which are inferred,
and is also very efficient, with an algorithmic complexity
of O(N ln2N). If one knows the depth L of the hier-
archy, and all {Bl} values, the multilevel partitions can
be obtained by starting from the lowest level l = 1, and
progressing upwards to l = L. However, this cannot be
done when the number and sizes of the hierarchical levels
are unknown. Although it is relatively simple to heuristi-
cally impose such patterns as binary trees or dendograms,
these are not satisfactory given the general character of
the model, which accommodates arbitrary branching pat-
terns. However, traversing all possible hierarchies is not
feasible for moderate or large networks, thus one must
settle with approximative methods. Here we propose
a very simple greedy heuristic, which given any start-
ing hierarchy, performs a series of local moves to obtain
the optimal branching. Although this algorithm cannot
promise to find the global optimum, we have found it
to perform very well for many synthetic and empirical
networks, and it tends to find consistent hierarchies, in-
dependently of the starting estimate. It is also efficient
enough not to hinder its application to very large net-
works, since it does not significantly change the overall
algorithmic complexity of the inference procedure. The
algorithm is based on the following local moves at a given
hierarchy level l:

1. Resize. A new partition of the Bl−1 nodes into a
newly chosen number of blocks Bl is obtained. This
is done via the agglomerative heuristic mentioned
previously, with the modification that it must not
invalidate the partition at the level l + 1, i.e. no
nodes which belong to different blocks at the upper
level can be merged together in the current level.
This restriction enables the difference in Σ (Eq. 5)
to be computed easily, since it only depends on the
modifications made in the current and upper levels,
l and l+1. The actual new value of Bl is chosen via
progressive bisection of the range Bl ∈ [Bl−1, Bl+1]
so that the minimum of Σ is bracketed.

2. Insert. A new level is inserted at position l. Its
size and partition are chosen exactly as in the resize
move above.

3. Delete. The model in level l is removed from the
hierarchy, i.e. the blocks of level l − 1 are merged
together directly as described in level l + 1.

Through repeated applications of these moves, it is pos-
sible to construct any hierarchy. The actual greedy opti-
mization consists in starting with some initial hierarchy,
and keeping track of whether or not each level is “done”
or “not done”. One marks initially all levels as “not done”
and starts at the top level l = L. For the current level l,
if it is marked “done” it is skipped and one moves to the
level l − 1. Otherwise all three moves are attempted. If

any of the moves succeeds in decreasing the description
length Σ, one marks the levels l − 1 and l + 1 (if they
exist) as “not done”, the level l as “done”, and one pro-
ceeds (if possible) to the upper level l + 1, and repeats
the procedure. If no improvement is possible, the level l
is marked as “done” and one proceeds to the lower level
l − 1. If the lowest level l = 0 is reached and cannot
be improved, the algorithm ends. Note that in order to
keep the description length complete, we must impose
that BL = 1 throughout the above process. The final
hierarchy will in general depend on the starting hierar-
chy, and one cannot guarantee that the global minimum
is found. However we found that in the majority of cases
this algorithm succeeds in finding the same or very simi-
lar hierarchies, independently of the initial choice, which
can be simply {Bl} = {1}. However, the actual time
it takes to reach the optimum will depend on how close
the initial tree was to the final one, and hence it is dif-
ficult to give an estimate on number of moves necessary.
However the slowest move is the resize operation, which
completes in O(Bl−1 ln2Bl−1) steps, and hence most of
the time is spent at the lowest level l = 0 with B−1 = N ,
which scales well for very large networks. We have suc-
ceed in obtaining reliable results with this algorithm for
networks in excess of 107 edges, hence it is suitable for
large scale systems [63].

IV. SYNTHETIC BENCHMARKS

Here we consider the performance of the nested block
model inference procedure on artificially constructed net-
works. Here use a nested version of the usual planted
partition model (PP) [57], inspired by similar construc-
tions done in [64, 65]. We define a seed structure with B0

blocks and [m1]rs = δrsc/B0+(1−δrs)(1−c)/B0(B0−1),
and construct a nested matrix of depth L − 1 via ml =
ml−1 ⊗ml−1 where ⊗ denotes the Kronecker product,
and l ∈ [1, L − 1]. The parameters of the model at level
l are elrs = 2Emrs, and all B = BL−1

0 blocks have the
same number of nodes. Via spectral methods [66] one
can show that the detectability transition happens at
〈k〉 = [(B0 − 1)/(cB0 − 1)]2, which is the same as the
regular PP model with B = B0 [17–19, 67].

In Fig. 4 are shown the results of the inference pro-
cedure for a generated model with B0 = 2 and L = 5,
N = 104 nodes and 〈k〉 = 20. The correct number of
blocks is detected up to a given value of c > c∗, where
c∗ is the detectability threshold. The hierarchy itself
matches the nested PP model exactly only for higher
values of c, and become progressively simplified for lower
values. Note that for a large fraction of c values the
correct lower level partition is detected with a very high
precision, but the hierarchy which is inferred is simpler
than the planted one. In these cases, however, both the
inferred hierarchy, as well as the planted model are fully
equivalent, i.e. they generate the same networks. The
shallower hierarchies which are inferred correspond to
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FIG. 4. Top: Normalized mutual information between the
inferred and true partitions for network realizations of the
nested PP model described in the text with B1 = 2, L = 5,
〈k〉 = 20 and N = 104, as a function of the assortativity
strength c, both via the standard stochastic block model with
B = 16, and the nested variant with unspecified parameters.
The star symbols (?) show the value of L for the inferred hi-
erarchy. All points are averaged over 20 independent realiza-
tions. The grey vertical line marks the detectability threshold
when B is predetermined, and the red line when the nested
model fails to detect any structure. Bottom: Example hier-
archies inferred for the values of c indicated in the top panel.
The left image shows the network realization itself, and the
right one the hierarchical structure [the planted hierarchy cor-
responds to the one in (a)].

identical representations of the same ers matrix, which
require less information to be described, in comparison
to the sequence of Kronecker products used in the model
specification, and hence cannot really be seen as a failure
of the inference method, since it simply manages to com-
press the original model. Before the value of c reaches
the detectability threshold, the inference method settles
on a fully random L = 1, B = 1 structure, correspond-
ing once again to parameter region where the block de-
tection is only possible with limited precision and if one
knows the correct model size. As predicated by the MDL
criterion, the inferred models tend to be as simple as
possible, with the hierarchies becoming shallower as one
approaches a random graph. The approach is therefore
conservative, which brings confidence to the blocks and
hierarchies which are actually found, since despite the
increased resolution capabilities it does not tend to find
spurious hierarchies.

V. EMPIRICAL NETWORKS

Here we present a detailed analysis of some selected
empirical networks, as well as a meta-analysis of several
networks, spanning different domains and size scales. In
all cases we used the degree-corrected stochastic block
model at the lowest hierarchical level, instead of the tra-
ditional model, since it almost always provides better re-
sults.
Political blogs of the 2004 US elections. This is a
network compiled by Adamic et al [68] of political blogs
during the 2004 presidential elections in the USA. The
nodes are N = 1222 individual blogs, and E = 19, 027
directed edges exists between pairs of blogs, if one blog
cites the other. This network is often used as an empirical
example of community structure, since it displays a divi-
sion along political lines, with two clearly distinct groups
representing those aligned with the republican and the
democratic parties. Indeed if one applies the nested block
model to this network, the topmost division in the hierar-
chy corresponds exactly to this bimodal partition, which
matches closely to the accepted division (see Fig. 5).
This partition is also obtained with the non-hierarchical
stochastic block model if one imposes B = 2 [32]. How-
ever, the nested version reveals a much more complete
picture of the network, where these two partitions pos-
sess a detailed internal structure, culminating in B0 = 10
subgroups with quite different connection patterns. For
instance, one can see that each of the two higher level
groups possesses one subgroup composed mainly of pe-
ripheral nodes, i.e. blogs which cite other blogs, but are
not themselves cited as often. Conversely, both factions
possess subgroups which tend to be cited by most other
groups, and others which are cited predominantly by spe-
cific groups. It is also interesting to notice that a large
fraction of the connections between the larger factions
are concentrated between two of these subgroups, which
therefore act as bridges between the larger groups. This
example shows that the model is capable of revealing the
structure of the network at multiple scales, which reveal
simultaneously the existence of the bimodal large-scale
division, as well the lower-level subdivisions.
The Autonomous Systems (AS) topology of the
Internet. Autonomous Systems (AS) are intermediary
building blocks of the internet topology. They repre-
sent organizational units, which are used to control the
routing of packets in the network. A single AS usu-
ally corresponds to a network of its own, and which is
usually owned by a private company, or a government
body. The network analyzed here corresponds to the
traffic of information between the AS nodes, as mea-
sured by the CAIDA project [70]. Each node in the net-
work is an AS, and a directed link exists between two
nodes if direct traffic has been observed between the two
AS. As of September 2013 the network is comprised of
N = 52, 104 AS nodes, and E = 399, 625 direct connec-
tions between them. The application of the nested block
model to this network yields the hierarchy seen in Fig. 6.
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FIG. 5. The political blog network of Adamic et al [68]. Left: Top-most partition of the hierarchy inferred with the nested
model. Right: The same network, using a circular layout, with edge bundling following the inferred hierarchy [69] (indicated
also by the square nodes, and the node colors). The size of the nodes correspond to the total degree, and the edge color
indicates its direction (from dark to light). Nodes marked with a blue halo were incorrectly classified at the top-most level,
according to the accepted partition.

FIG. 6. Large-scale structure of the Internet at the au-
tonomous systems level, as obtained by the nested stochastic
block model, displaying a prominent core-periphery architec-
ture. The “blow up” shows the nodes which belong to the
“core” top-level branch, containing AS nodes spread all over
the globe, as shown in the map inset.

The most prominent feature observed is a strong core-
periphery structure, where most connections go through
a small group of nodes, which act as hubs in the network.
The groups both in the core and in the periphery seem
strongly correlated to geographical location. However all
the nodes of the core groups are not confined to a single
geographical location, and are instead spread all over the

globe.
The Film-Actor Network. This network is compiled
by extracting information available in the Internet Movie
Database (IMDB) [71], and it contain each cast member
and film as distinct nodes, and an undirected edge exists
between a film and each of its cast members. If nodes
with a single connection are recursively removed, a net-
work of N = 372, 447 and E = 1, 812, 312 remains (as
of late 2012). As can be seen in Fig. 7, the nested block
model fully captures the bipartite nature of the network,
and separates movies and actors at the top-most hierar-
chical level, and proceeds to separate them in geograph-
ical, temporal and topical (genre) lines. The observed
partition is similar to the one obtained via the non-
hierarchical model [20], but one finds B = 717 blocks,
instead of B = 332 with the flat version.
Meta-analysis of several empirical networks. We
performed an analysis of several empirical networks
shown in Fig. 8, which belong to a wide variety of do-
mains, and are distributed across many size scales. We
used both the non-hierarchical stochastic block model,
as well as the nested variant. In Fig. 8(a) and (b) are
shown the average block sizes N/B for all networks us-
ing both models. For the non-hierarchical version, a clear
N/B ∼

√
E trend is observed, which corresponds to the

resolution limit present with this method, and other ap-
proaches as well. In Fig. 8(b) are shown the results for
the nested model, where such trend can no longer be ob-
served, and the smallest average block sizes no longer
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FIG. 7. Large-scale structure of the IMDB film-actor net-
work. Each node in this graph represents a lowest-level block
in the hierarchy, instead of individual nodes in the graph.
The size of the nodes indicates the number of nodes in each
group. The hierarchy branch at the top are the actors, and
at the bottom are the films. The labels classify each branch
according to the most prominent geographical, temporal or
genre characteristics found in the database.

seem to depend on the size of the network, which serves
as an empirical demonstration of the lack of resolution
limit shown previously. The values of the description
length themselves are also distributed in a seemingly non-
organized manner [See Fig. 8(c)], i.e. no general tendency
for larger networks can be observed, other than an in-
creased range of possible values. Any difference observed
seems to be due to the actual topological organization,
rather than intrinsic constraints imposed by the method.
We also computed the modularity of the inferred block
structures, Q =

∑
r err/2E − e2r/(2E)2, which measures

how assortative is the topology. Higher values of Q close
to 1 indicate the existence of densely connected commu-
nities. The value of Q is the most common quantity used
to detect blocks in networks, and it presumes that such
assortative connections are present. In contrast, by fit-
ting a general stochastic block model, no specific pattern
is assumed, and the partition found corresponds to the
least random model which matches the data. In Fig. 8 it
is shown the values of Q obtained for the analyzed net-
works. Indeed, some networks are modular, with high
values of Q. However one does not observe any strong
correlation of the description length and the modularity
values. Hence the most structured networks do not nec-
essarily possess much larger Q values, which indicate that
the building blocks of their topological organization are
not predominantly assortative communities (this is clear
in some of the examples considered previously, such as
the Internet AS topology and the IMDB network). How-
ever, for many of these networks, it is probably possible
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0 62 159 No 11 21, 363 91, 286 No 22 255, 265 2, 234, 572 Yes
1 105 441 No 12 27, 400 352, 504 Yes 23 317, 080 1, 049, 866 No
2 115 613 No 13 34, 401 421, 441 Yes 24 325, 729 1, 469, 679 Yes
3 297 2, 345 Yes 14 39, 796 301, 498 Yes 25 334, 863 925, 872 No
4 903 6, 760 No 15 52, 104 399, 625 Yes 26 372, 547 1, 812, 312 No
5 1, 222 19, 021 Yes 16 56, 739 212, 945 No 27 449, 087 4, 690, 321 Yes
6 4, 158 13, 422 No 17 75, 877 508, 836 Yes 28 654, 782 7, 499, 425 Yes
7 4, 941 6, 594 No 18 82, 168 870, 161 Yes 29 855, 802 5, 066, 842 Yes
8 8, 638 24, 806 No 19 105, 628 2, 299, 623 No 30 1, 134, 890 2, 987, 624 No
9 11, 204 117, 619 No 20 196, 591 950, 327 No 31 1, 637, 868 15, 205, 016 No
10 17, 903 196, 972 No 21 224, 832 394, 400 Yes 32 3, 764, 117 16, 511, 740 Yes

No. Network No. Network No. Network

0 Dolphins [72] 11 arXiv Co-Authors (cond-mat) [73] 22 Web graph of stanford.edu. [74]
1 Political Books a 12 arXiv Citations (hep-th) [73, 75] 23 DBLP collaboration [76]
2 American Football [3, 77] 13 arXiv Citations (hep-ph) [73, 75] 24 WWW [6]
3 C. Elegans Neurons [78] 14 PGP [79] 25 Amazon product network [76]
4 Disease Genes [80] 15 Internet AS (Caida) b 26 IMDB film-actorc [20] (bipartite)
5 Political Blogs [68] 16 Brightkite social network [81] 27 APS citations d

6 arXiv Co-Authors (gr-qc) [73] 17 Epinions.com trust network [82] 28 Berkeley/Stanford web graph [74]
7 Power Grid [78] 18 Slashdot [83] 29 Google web graph [74]
8 arXiv Co-Authors (hep-th) [73] 19 Flickr [84] 30 Youtube social network [76]
9 arXiv Co-Authors (hep-ph) [73] 20 Gowalla social network [81] 31 Yahoo groups e (bipartite)
10 arXiv Co-Authors (astro-ph) [73] 21 EU email [73] 32 US patent citations [85]

a V. Krebs, unpublished.
b Retrieved from http://www.caida.org.
c Retrieved from http://www.imdb.com/interfaces.
d Retrieved from http://publish.aps.org/dataset.
e Retrieved from http://webscope.sandbox.yahoo.com.

FIG. 8. (a) The average block size N/B obtained using the
non-hierarchical model, as a function of E, for the empirical
networks listed in the bottom table. The dashed line shows
a
√
E slope. (b) The same as (a) but with the nested model.

(c) The description length Σ/E for the nested model as a
function of E. (d) The value of modularity Q as function of
Σ/E, for the nested model.

to find partitions which lead to much higher Q values.
These partitions would, on the other hand, invariable cor-
respond to a block model ensemble with a larger entropy
than those inferred via maximum likelihood. Therefore,
the maximization ofQ in these cases would invariably dis-
card topological information present in the network, and
provide a much simplified and possibly misleading pic-
ture of the large-scale structure of the network. Hence
it seems more appropriate to confine modularity maxi-
mization only to cases where the assortative structure is
known to be the dominating pattern. However even in
these cases methods based on statistical inferences pos-
sess clear advantages, such as the lack of resolution limit,
model selection guarantees, and the overall more princi-
pled nature of the approach.

stanford.edu
http://www.caida.org
http://www.imdb.com/interfaces
http://publish.aps.org/dataset
http://webscope.sandbox.yahoo.com
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VI. DISCUSSION

We have presented a principled method to detect hi-
erarchical structures in networks via a nested stochas-
tic block model. This method fully generalizes previous
approaches for the detection of hierarchical community
structures [43–48], since it makes no assumptions either
on the actual types of large-scale structures possible (as-
sortative, dissortative or any arbitrary mixture), or on
the hierarchical form, which is not confined to binary
trees or dendograms. We have shown that a major ad-
vantage of this approach is that it breaks the so-called
resolution limit of approaches like modularity and non-
hierarchical model inference, where modules smaller than
a characteristic size scaling with

√
N cannot be resolved.

With the nested model presented, this characteristic scale
is replaced by much a smaller logarithmic dependence,
making it virtually non-existent for many applications.

This increased resolution comes as a result of robust
model selection principles, and is integrated with the de-
sirable capacity of differentiating between noise and ac-
tual structure, and therefore it is not susceptible to the
detection of spurious communities. We have shown that
the model is capable of inferring the large-scale features
of empirical networks in significant detail, even for very
large networks.

This type of approach should in principle also be ap-
plicable to other model classes, such as those based on
overlapping [9, 86–88], or link communities [33, 89]. We
also predict it should serve as more refined method of de-
tecting missing information in networks [31, 43], as well
as for the prediction of the network evolution [90], de-
termining the more salient topological features [91, 92],
or as a large-scale functional summary of the network
topology [93].
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DIRECTED AND UNDIRECTED NETWORKS

As mentioned in the main text, the model described is
easily generalized for directed graphs. For the ensemble
entropies, we have for the undirected case [1],

St =
1

2

∑

rs

ersHb

(
ers
nrns

)
, (1)

while for the directed case it reads,

Sdt =
∑

rs

ersHb

(
ers
nrns

)
, (2)

where Hb(x) = −x lnx − (1 − x) ln(1 − x) is the binary
entropy function. In both cases, ers is the number of
edges from block r to s (or the number of half-edges for
the undirected case when r = s), and nr is the number of
nodes in block r. In the sparse limit, ers � nrns, these
expressions may be written approximately as,

St ∼= E − 1

2

∑

rs

ers ln

(
ers
nrns

)
, (3)

Sdt ∼= E −
∑

rs

ers ln

(
ers
nrns

)
. (4)

For the degree-corrected variant with “hard” degree con-
straints, we have

Sc ∼= −E −
∑

k

Nk ln k!−
1

2

∑

rs

ers ln

(
ers
eres

)
, (5)

Sdc ∼= −E −
∑

k+

Nk+ ln k+!−
∑

k−

Nk− ln k−!

−
∑

rs

ers ln

(
ers

e+r e
−
s

)
,

(6)

where er =
∑

s ers is the number of half-edges incident on
block r, and e+r =

∑
s ers and e−r =

∑
s esr are the num-

ber of out- and in-edges adjacent to block r, respectively.
These expressions are also only valid in the sparse limit,
which in this case amounts to the following conditions,

ers

〈
k2
〉
r
− 〈k〉r
〈k〉2r

〈
k2
〉
s
− 〈k〉s
〈k〉2s

� nrns, (7)

where
〈
kl
〉
r
=
∑

i∈r k
l
i/nr (for the directed case we sim-

ply replace
〈
kl
〉
r
→
〈
(k+)l

〉
r
and

〈
kl
〉
s
→
〈
(k−)l

〉
s
in

the equation above). Unfortunately there is no closed-
form expression for the entropy outside the sparse limit,
unlike the traditional variant [1].

For the upper level multigraphs the entropies are [1],

Sm =
∑

r>s

ln
((

nrns

ers

))
+
∑

r

ln
((

((nr
2 ))

err/2

))
(8)

Sdm =
∑

rs

ln
((

nrns

ers

))
, (9)

where
((

n
m

))
=
(
n+m−1

m

)
is the number of m-combinations

with repetitions from a set of size n.

Empirical networks

In Fig. 1 is shown a higher resolution version of Fig. 6
in the main text, with additional information on the cor-
relation with geographical location. As can be seen, at
the topmost level is separated in three blocks, compris-
ing: 1. The “core” AS nodes; 2. The Americas, Africa,
South Asia and Oceania; 3. Europe, Russia and the mid-
dle east. These get further subdivided in the lower levels.

In Fig. 2 is shown a higher resolution version of Fig. 7
in the main text, containing the large-scale structure of
the IMDB network. See also Ref. [2] for more details
on the type of information which can be associated with
each block.
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FIG. 1. Large-scale structure of the Internet at the autonomous systems level, as obtained by the nested stochastic block
model, displaying a prominent core-periphery architecture. The “blow up” shows the nodes which belong to the “core” top-level
branch, containing AS nodes spread all over the globe, as shown in the map inset below it. The maps at the bottom show
the network partitions at different hierarchical levels, from top to bottom, showing the strong correlation with geographical
divisions. The stars (?) are the “core” nodes, and the circles are regular AS nodes.
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FIG. 2. Large-scale structure of the IMDB actor-film network. Each node in this graph represents a lowest-level block in the
hierarchy, instead of individual nodes in the graph. The size of the nodes indicates the number of nodes in each group. The
hierarchy branch at the top are the actors, and at the bottom are the films. The labels classify each branch according to the
most prominent geographical, temporal or genre characteristics found in the database.
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