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In this Letter, we explore the dynamics of species abundances within ecological communities using the
generalized Lotka-Volterra (GLV) model. At variance with previous approaches, we present an analysis of
GLV dynamics with temporal stochastic fluctuations in interaction strengths between species. We develop a
dynamical mean field theory (DMFT) tailored for scenarios with colored noise interactions, which we term
annealed disorder, and simple functional responses. Our DMFT framework enables us to show that
annealed disorder acts as an effective environmental noise; i.e., every species experiences a time-dependent
environment shaped by the collective presence of all other species. We then derive analytical predictions for
the species abundance distribution that well match empirical observations. Our results suggest that
annealed disorder in interaction strengths favors species coexistence and leads to a large pool of very rare
species in the systems, supporting the insurance theory of biodiversity. This Letter offers new insights not
only into the modeling of large ecosystem dynamics but also proposes novel methodologies for examining

ecological systems.
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Understanding the mechanisms driving the biodiversity
patterns observed across various ecosystems has long been a
central challenge in community ecology [1,2]. Traditionally,
ecologists believed that more complex ecosystems, contain-
ing a greater number of species and interactions, should
exhibit greater stability [3]. This notion was fundamentally
challenged by May, who introduced the concept of stability
bound for randomly assembled ecosystems [4], showing
that the larger the number of interactions and their variabil-
ity, the less stable the system is. This result is known as
“diversity-stability paradox” [5]. One key area of research
that has gained momentum since May’s pivotal work
focuses on understanding the role of interaction networks
on the stability and species coexistence within large com-
munities [2,6—10]. Given the inherent unknowns in species
interactions, several recent works have proposed modeling
the dynamics of interacting species through generalized
Lotka-Volterra (GLV) equations with quenched random
disorder (QGLV), where the underlying interaction network
is fully connected, leading to a number of interesting
results [11-15]. The phase diagram of these models is
essentially divided into three regions of qualitatively differ-
ent behaviors: a system may converge to a fixed point,
reach a multiple-attractors state, or have populations which
grow indefinitely [13,14,16]. Furthermore, the addition of
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demographic noise to the QGLV leads to new phases such as
a Gardner phase [17].

The QGLV model assumes that species interactions
remain constant over time. However, empirical ecological
systems are characterized by temporal fluctuations in
species interactions, influenced by variations in environ-
mental conditions, resource availability, and other factors
that operate on a timescale comparable to population
dynamics [18-22]. In the single fixed point phase, the
stability of the QGLV model decreases as the fraction of
nonzero interactions and the heterogeneity of the interaction
strengths increases [13,23]. In particular, such ecological
communities dynamically mitigate instability by reducing
species diversity, eventually achieving a marginally stable
state [13], consistent with previously obtained theoretical
bounds [5]. Moreover, the distribution of the stationary
populations within the ecological community (known as
species abundance distribution, or SAD), as obtained in the
unique equilibrium phase and in the limit of a large number
of species within the dynamical mean field theory (DMFT),
is a truncated Gaussian [14,16]. This distribution is very
different from the heavy tail SAD observed in empirical
microbial [24], plankton [25], or forest [26] communities.

In the present Letter, within the established framework of
the GLV model featuring a fully connected random
interaction network, we consider time-dependent species
interactions and a Monod functional response, commonly
used for modeling the growth of microorganisms [27].

© 2024 American Physical Society
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FIG. 1. Examples of species abundances trajectories obtained by simulating Eq. (1) for § = 100, 2 = 0, and different values of the

characteristic correlation time 7z and noise intensity o. (a) 7=0.1, u=0, c=1; (b) 7=1, u=0, 6=0.8; (c) =10,
1 =0, 6 = 0.6. Fluctuating behavior is instrumental in promoting the coexistence of multiple species within the ecosystem and is
present for all ranges of 7, including the limit = — 0. Different values of ¢ as 7 varies are chosen to better visualize population

fluctuations as a function of time.

Specifically, we adopt the hypothesis that any interaction
between an arbitrary pair of species can be modeled as
stochastic colored noise, which we call annealed GLV
(AGLV). The introduction of temporal stochastic fluctua-
tions in the strengths of species interactions yields results
that fill some of the aforementioned gaps for the QGLV. In
fact, unlike previous models where environmental noise
was introduced externally with predefined statistical prop-
erties [24,28], our model incorporates an effective random
environment whose characteristics are determined self-
consistently. In this way, every species experiences an
environment shaped by the collective presence of all other
species. We find that temporal fluctuations in the species
interactions promote species diversity and generate SAD
that aligns with data, where the majority of species are rare,
and most individuals belong to a small fraction of all
species [29].

Let us consider x;(¢), the population density at time ¢ of
the species i. Then the dynamics of the AGLV system with
colored noise for S interacting species are given by

ril1=x:(0)/K:)+ > ey (0 x;(1)] +hi(1) |

J#i

(1)

with i =1,....S, and where a;;(¢) :ﬂ/S—I—Uzij(t)/ﬁ
for i # j and {z;;(r): t > 0} are independent Gaussian
random  variables with  z;;(1) =0, z;()z(f) =
8:16,10(ALT) = 8;48,,[(1 + 2t/79)/27]e™™/7,  where
d,, is the Kronecker 6, and At = [t — #'|. J(x) is a generic
function of x, and in particular we will consider two cases:
J(x) =x, to make direct comparison with QGLYV, and
J(x) = [x/(1 4 cx)], where ¢ is known as handling
time [30]. h;() is a possible time-dependent external field.
The amplitude of the noise Q(At|7) is chosen so that in the

limit 7 — oo we recover the case of quenched disorder. For
simplicity, we set 7y, r;, K; =1 for i =1, ..., § and work
with dimensionless variables and parameters. From this
general annealed formulation with colored noise, the limit
7 — 0 corresponds to annealed white-noise (AWN) dynam-
ics. In Fig. 1 we show the effect of time correlated noise on
the species abundance evolution for J[x;(¢)] = x;(¢). In our
model fluctuations scale like the size of the population,
generating a time-dependent multiplicative noise that keeps
the trajectories away from zero, thus preventing their
extinction for any finite 7. This behavior is substantially
different from the one of models with quenched noise,
where all species’ populations with a negative growth rate
are doomed to extinction in the infinite time limit. Species
populations undergo fluctuations between high and low
abundances, with an average frequency which depends on
the value of 7. This fluctuating behavior is instrumental in
promoting the coexistence of multiple species within the
ecosystem and is present for all ranges of finite z, including
the limit 7 — 0. As we show, the same results hold for
JIx;(t)] = {x;(#)/[1 + cx;(1)]}. Facilitating species coex-
istence through fluctuations is a mechanism that has also
been observed in the chaotic phase of the QGLV [15,31,32]
or similar models [29], leading to a large pool of very rare
species in the systems, supporting the insurance theory of
biodiversity [26,29].

The DMFT for the general AGLV Eq. (1) is given by [see
Sec. 1 in Supplemental Material (SM) [33] ]

(1) = x(0)[1 = x(2) + pM (1) + on(t) + h(1)],  (2)

where M (1) =E[x(t)], E[ - | indicates the expected value,
and in the following we set A(¢) = 0. The self-consistent
Gaussian noise #7(z) is such that E[y(#)] =0 and
Eln(1n(#)] = O(Arle)E{JEx(n) T [x(r)]}

From Fig. 5 in SM [33], we can see that at stationarity,
the (connected) autocorrelation function of J[x()] has an
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FIG.2. Comparison between numerical and analytical solutions. The histograms represent the species abundance distributions (SADs)
obtained by simulating the full AGLV system given by Eq. (1) for § = 100 species; the solid lines are the corresponding SADs given by
the DMFT and UCNA. (a) Eq. (4) with 7 = 0.1. As a blue dashed line we also show the AWN solution given by Eq. (5). (b),(c) Colored
noise AGLV [Eq. (4)] with 7 = 1 and 7 = 10, respectively. The analytical DMFT perfectly describes the SAD given by the numerical
simulations of the full system. The initial conditions of the populations in all cases are drawn from x; ~ U[0.1, 0.2], where U denotes the
uniform distribution, while the values u and ¢ are as in Fig. 1. The different values of ¢ as 7 varies and were chosen to better visualize the
change of the SAD toward that of a truncated Gaussian plus a Dirac § at x = 0 obtainable in the 7 = +oo limit. See supplemental figures

(Sec. 3 of SM [33]) for other values of y, o, and 7.

exponentiallike decay:

B0l x()]} ~ B2 ()] ~{EL (1) ~ B2l ()]}
3)

and exploiting Eq. (3) we can simplify the self-consistency
for n as E[p(t)n(7)] = Q(A#|7)E[J(x)?], at least in the
relevant regime |Af| = | — | < 7, in which the connected
autocorrelation function can be approximated by the non-
connected autocorrelation function, with the new effective
timescale 7 = 1/[1/7+ (1 = E*[J(x)l/E[J(x)*])/7.]. (see
Sec. 2 in SM [33] for further details).

With this simplification we can now use the unified
colored noise approximation (UCNA) [34,35] on Eq. (2),
which, for both cases of J(x) considered here, leads to the
same stationary SAD:

Pi(x) = ﬁ l+ x | e b (=% (4)
Y 7(8,,D,7) \7 ’

where x > 0, Z(6,,D,7) is the normalization constant,
that can be computed analytically, §, = (1 + uM*)/D(z),
D(7) = 6’B*[J(x)?](1 + 27)7(z) /27, and X =1+ uM*
[E*(-) denotes the average with the distribution P; and
M* = E*[J(x)]]. Notice that P}(x) is essentially an inter-
polation between a truncated Gaussian and a Gamma
distribution. The former is known to be the solution for
the SAD of the DMFT in the case of random quenched
interactions in the single equilibrium phase [14,16], while
the latter is shown below to be the exact solution of the
AWN case, corresponding to the limit 7 ~ 7 — 0 of Eq. (2).

UCNA is recognized for its exactness in both 7 = 0 and
T = 400, proving to be a reliable interpolation method
for intermediate values of 7z [34,35]. This is explicitly

illustrated in Fig. 2, where the analytical solution of the
SADs for various 7 values, obtained through both the
DMEFT and UCNA, is compared with numerical solutions
derived from integrating Eq. (1) for a system comprising
S = 100 species with J(x) = x. In Sec. 2.2 of SM [33], we
show that the same result also holds for the case with the
Monod functional response. We have also performed a
sensitivity analysis, showing that the analytical solutions
match the numerical ones very well for a wide range of
parameters.

As demonstrated in both Figs. 1 and 2, the introduction
of time-dependent fluctuations in interactions promotes
species coexistence. This is attributed to the induced
fluctuating behavior, causing the species’ growth rate to
transition from negative to positive, preventing extinctions,
as also verified numerically (see Fig. 2). Only when
7 =400 a Dirac’s § develops at x =0, whose mass
represents the fraction of extinct species. However, in
practical applications, distinguishing rare species from
extinct ones in samples with a finite number of species,
S, requires consideration. This can be addressed by
introducing a threshold value, x,,. As shown in Fig. 3,
we find that the fraction of extinct species increases with z.
This finding indicates that rapid stochastic variability in
species interactions promotes coexistence, while slow or
static interactions are detrimental. Each point in Fig. 3 is
given by [;" P} (x)dx with P} (x) obtained as in Fig. 2. The
horizontal dashed lines in Fig. 3 represent the number of
extinct species in the quenched disorder limit [14,16]. In
Sec. 2.3 of SM [33], we also show that this result holds for
different values of the extinction threshold.

In the white-noise 7 — 0 limit the DMFT equation is the
same of Eq. (2), but in this case with E[y(¢)n(?)] =
22(1)6(t — '), 2*(t) = E{J[x(¢)]*}, and the multiplica-
tive noise term x(#)5(¢) should be interpreted in the
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FIG. 3. Fraction of extinct species at stationarity for 4 = 0 and
different values of interactions heterogeneity (given by o) as a
function of the characteristic time of species interaction fluctua-
tions (z). The solid lines are instead analytically obtained by
assuming that 7, ~ 7 (see Sec. 2.3 in SM [33] for further details),
allowing a simple estimation of the fraction of extinct species
without fitting the model parameters. Here the extinction thresh-
old is set to x,, = 1072, but the qualitative behavior does not
depend on the specific value of x,,. We refer to Sec. 23 in SM for
all the details.

Stratonovich sense [36]. At stationarity, the self-
consistency imposes M* = E*[J(x)] and 2 = E*[J(x)?].
The exact stationary distribution P can be derived from the
Fokker-Planck equation corresponding to Eq. (2), and it
reads [for any J(x)]:

*(x) :L&x—lﬁse—ﬁx (5)

I'(6) ’
and it coincides with the limits of P}(x) when 7 — 0 as
discussed in detail in the section “White-Noise Limit”
in SM [33]. We also have lim,_ (5, = 2(1 +uM*)/
(6*T) =6 with M*=1/(1—pu) and T2 =5(6+ 1)/?
for J(x) = x. Similar results are obtained for the case with
the functional response (see SM [33], Sec. 2.2).

For J(x) = x we can write explicitly the SAD’s param-
eters as a function of y and o as (see Sec. 2.4 in SM [33])
2

ﬂzg—é(6+1); 52%(1—;!)—1, (6)
2 o
while for the case with functional response, we can simply
solve numerically the equations for M* and £* as a function
of f and o.

The predicted SADs by Eq. (4) through the DMFT and
UCNA are plotted as continuous lines in Fig. 2. The
parameters are obtained by first fitting the autocorrelation,
checking the agreement with the empirical parameters
(error below 5%; see Sec. 2 in SM [33]). In panel

= Annealed == Quenched
107! 100
1072 107 S
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5
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FIG. 4. Comparison with empirical data. The main panel shows
the SAD in the Barro Colorado Island forest; the black line is the
fit of the Gamma distribution predicted by AGLV, while the red
dashed line is the fit of the Gaussian distribution predicted by
QGLV. The parameters of the distribution have been estimated by
using maximum likelihood. The inset shows the SAD in a
Caribbean coral reef.

(a) we also plot, as a dark blue dashed line, the AWN
solution Pj(x) given by Eq. (5). In this case, the distribu-
tion parameters are directly calculated from Eq. (6) as a
function of u and o.

To address the empirical relevance of our theoretical
findings, we have analyzed two datasets: trees from a
tropical forest [37] and coral reefs [38]. Figure 4 shows the
SADs using Preston (log2) scale (as usually done in this
context [1]). The empirical SADs were then compared with
the truncated Gaussian and Gamma distributions that can
be derived from the QGLV and AGLY, respectively. We find
that the empirical SADs are accurately described by the
AGLV model, while the QGLV model fails to reproduce
these patterns. This comparison proves the empirical
relevance of our model, demonstrating its applicability to
real-world ecological data.

As is well-known in the literature, the QGLV model
exhibits certain pathologies that lead to the existence of a
region in the phase diagram where densities diverge [39].
These divergences also persist in the AGLV model.
Actually, the temporal fluctuations in interactions expand
the region of the phase space where the model does not
converge (see Sec. 4 in SM [33] for further details).
However, when the Monod functional response is intro-
duced through a bounded J(x), we prevent indefinite
population growth, eliminating any divergences and
dependencies on the initial conditions. Therefore, the phase
diagram displays only the stable stationary state for any
values of u and o. The stationary solution, Eq. (4), does not
depend on the specific form of J(x). The specific choice of
J(x) enters only through self-consistencies, i.e., J(x)

167101-4



PHYSICAL REVIEW LETTERS 133, 167101 (2024)

determines the random environment experienced by the
species.

In this Letter, we have undertaken an investigation into
the GLV equations with annealed disorder, incorporating
finite correlation time and simple functional responses. We
have determined the corresponding dynamical mean-field
equations for a large number of species, which do not
depend on the specific form of J(x). The inclusion of
temporal stochastic fluctuations in the strengths of species
interactions has resulted in a diverse range of ecologically
significant outcomes. First, the introduction of annealed
disorder in the GLV equations, for any finite correlation
time, has exerted a substantial positive influence on the
biodiversity of the system. Specifically, when the dynamics
of the system converges to the stationary distribution, we
observe fluctuations in the dynamics of species popula-
tions, where species abundances alternate between high and
low values, favoring the coexistence of all species and
supporting the insurance theory of biodiversity [26,29].
This is, in fact, a similar outcome to what QGLV models
found in the chaotic phase [15,32] when introducing an
immigration rate A, which explicitly prevents extinctions.
Second, in the white-noise limit, the DMFT leads to the
stochastic logistic model, a phenomenological model that
proved to be consistent with several macroecological laws
in microbial ecosystems [24,28]. In particular, the analyti-
cal species abundance distribution derived from the
DMFT follows the Gamma distribution, a widely utilized
probability distribution in macroecology [1,37]. Again,
similar truncated fat-tailed distribution has recently been
numerically found in the chaotic phase of the QGLV [32]
and in the GLV with strong interactions [29,40,41] with
immigration. Eventually, we have presented a refinement
of the model, through the inclusion of a simple functional
response. We have shown that it maintains not only the
core phenomenology described above but also rectifies
any nonphysical divergences observed in the classic
QGLYV and in the AGLV. Thus, it enhances the model’s
realism and applicability without sacrificing its funda-
mental characteristics and predictive capabilities. This
work opens various avenues of research, including the
integration of quenched and annealed disorder and the
correlations between pairs of interacting species [14,16]
or more complex hierarchical correlation structures [42].
More generally, the methodology presented here can be
exploited to study the effect of annealed disorder also in
other ecological dynamics. Moreover, to further improve
the AGLV model, it would be valuable to explore sparse
interaction networks instead of the fully connected ones
examined here and in previous works [12-17] for the
quenched version. However, unlocking the dynamics of
this intriguing scenario requires a more comprehensive
generalization of the DMFT approach [43]. The explora-
tion of such directions holds significant promise for advan-
cing the modeling of large-scale ecosystem dynamics,

understanding emergent macroecological patterns observed
in empirical data, and investigating the influence of envi-
ronmental fluctuations on species coexistence.
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