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A central concern of community ecology is the interdependence between interaction strengths and the
underlying structure of the network upon which species interact. In this work we present a solvable example
of such a feedback mechanism in a generalized Lotka-Volterra dynamical system. Beginning with a community
of species interacting on a network with arbitrary degree distribution, we provide an analytical framework from
which properties of the eventual "surviving community" can be derived. We find that highly connected species
are less likely to survive than their poorly connected counterparts, which skews the eventual degree distribution
towards a preponderance of species with lower degrees. Furthermore, the average abundance of the neighbors of
a species in the surviving community is lower than the community average (reminiscent of the famed friendship
paradox). Finally, we show that correlations emerge between the connectivity of a species and its interactions
with its neighbors. More precisely, we find that highly connected species tend to benefit from their neighbors
more than their neighbors benefit from them. These correlations are not present in the initial pool of species and
are a result of the dynamics.
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I. INTRODUCTION

The modern discipline of macroecology takes up the ambi-
tious challenge of identifying and understanding the unifying
characteristics of ecological communities. Such characteris-
tics include the shapes of abundance distributions, fluctuations
in species abundances, and abundance-diversity relationships
[1–5]. Of particular interest is the relationship between
ecosystem network structure and interspecies relationships
[6–8]. Interaction network structure in real ecological net-
works has been linked to interspecies competition [9,10],
stability [11–15], and the functioning of an ecosystem in the
wider biosphere [16–19].

To explain some of these observed relationships, simple
models have been suggested (such as the cascade and niche
models), which have had success in replicating observed pat-
terns in natural food webs [11,20–26]. The tools of statistical
physics and disordered systems are particularly well suited to
aiding in the study of these models, due to their emphasis
on deriving universal and emergent phenomena from micro-
scopic interactions. As such, building on the seminal work of
May [27], some works have focused on how network structure
can influence ecological stability by using random matrix
theory [26,28–31]. However, these models simply posit the
structure of the network and interaction coefficients. There-
fore, it could be that the hypothesized Jacobian matrix does
not correspond to any realistic ecosystem dynamics.

More recently, dynamic mean-field theory (DMFT) tech-
niques [32,33] have been used to examine the statistics of
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interactions in the surviving communities that result from
plausible ecosystem dynamics [34–36]. It has been shown that
intricate correlations between species’ interaction coefficients
arise in these so-called feasible model communities, and that
these statistics are important for stability [37].

In this work, we seek to understand what kinds of inter-
action networks are permitted in feasible communities. We
present an analytically tractable model in which an initial pool
of species interacts according to generalized Lotka-Volterra
dynamics. Our interest is in the long-time behavior of the
community as it follows these dynamics. The degree distri-
bution of the network on which species initially interact is
an input for the model. However, because species can die out
during the dynamics, the final network of surviving species
is a result of the interactions, and the eventual patterns that
emerge in the community are a consequence of its feasibility.
In this way, our model captures some salient aspects of the
feedback loop between interspecies interactions and the struc-
ture of the network on which these interactions take place.
We are thus able to probe the interdependence of interaction
network structure and species relationships that characterize
feasible communities.

Ultimately, we are able to demonstrate several general
trends (for competitive and stable communities). First, more
highly connected species are less likely to survive, which
skews the degree distribution towards having many species
with low connectivity and few species with high connectivity
(a pattern observed in natural food webs [11,23]). Second,
species with higher connectivity typically have lower abun-
dance. This in turn means that the average abundance of
the neighbor of a randomly selected species is lower than
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the abundance of a randomly selected species (akin to the
so-called friendship paradox). Finally, we find that there are
correlations between a species’ connectivity and its interac-
tions with its neighbors. On average, well-connected species
will have more favorable interactions with their neighbors
than their neighbors will have with them (and vice versa for
poorly connected species).

The content of this work is organized as follows. In Sec. II,
we describe the generalized Lotka-Volterra model and the
structure of the interspecies interactions explicitly. We then
outline our analytical methods for predicting the behavior of
the model in the long-time limit in Sec. III, and we com-
pare our results for the abundance distributions of species in
the community to the results of numerical integration. We
also analyze stability, and find that network structure can be
a stabilizing influence in communities with many predator-
prey and competitive interactions. In Sec. IV, we derive a
simple expression for the eventual degree distribution of the
community, finding that species with low degree become rela-
tively more common, and species with high degree become
relatively rare. We also examine the dynamically induced
correlations that emerge between species interactions and the
network, and offer biological interpretations for these corre-
lations. We finish by discussing possible extensions to this
model and the implications of our results in Sec. V. In partic-
ular, we discuss the relationship of our work to Refs. [38,39],
which also analyze Lotka-Volterra dynamics with random
interactions and network structure.

II. MODEL

Consider a community of N species interacting according
to generalized Lotka-Volterra (GLV) dynamics. These dy-
namics produce feasible communities by construction (i.e.,
all abundances remain positive if they are so at t = 0). The
abundance of species i at time t , written xi(t ), is determined
by the following set of equations:

ẋi(t ) = xi(t )

⎡⎣1 − xi(t ) +
∑
j �=i

Ai jαi jx j (t )

⎤⎦. (1)

We have set the intraspecific interaction coefficients to −1, as
indicated by the term −xi in the square brackets, and we chose
the intrinsic growth rates equal to 1. The adjacency matrix
elements {Ai j} encode the structure of the network on which
the species interact. The variable Ai j is equal to 1 if species
i and j interact, and is 0 otherwise. We always impose Ai j =
Aji. The interaction matrix αi j dictates the influence of species
j on species i, provided that they interact. The values of αi j

for which Ai j = 0 do not play a role in the dynamics. Both
the adjacency matrix A and interaction matrix α are random
matrices. They are selected independently of each other, and
are fixed throughout the dynamics.

We construct the matrix A according to the random con-
figuration model [40,41] (also known as the Chung-Lu model
[42]). This generalizes the often-used Erdős-Rényi network to
incorporate an arbitrary degree distribution, which we write as
pk . To generate an instance of the network, we first draw the
degree of each node independently from pk . With this degree
sequence {ki}, we set each pair (Ai j, Aji ) to one with proba-

bility kik j/(dN ), where d is the mean degree. We set the pair
to zero otherwise. For sufficiently large N , this construction
will produce networks with the desired degree distribution. To
ensure that the probability of connection is well defined, we
require kik j < dN for all i, j. We note here that the theoretical
results we will derive also apply to other kinds of network. In
Appendix F we confirm this using the Barabási-Albert graph.
The results for the Chung-Lu model can be thought of as an
"annealed network approximation" [31,43] for other graphs
when kik j � dN .

For simplicity, we will assume that the initial degree dis-
tribution is uniform, with width w = kmax − kmin, and with
average degree d = (kmax + kmin)/2. In our examples, both d
and w are proportional to N . In the case of the uniform degree
distribution, the condition kik j < dN for all (i, j) is equivalent
to (w/2 + d )2 < dN .

To construct an instance of the interaction matrix α, pairs
of elements (αi j, α ji ) are drawn identically and independently
from a probability distribution with the following statistics:

〈αi j〉α = μ

d
,

Var(αi j )α = σ 2

d
,

Cov(αi j, α ji )α = γ σ 2

d
. (2)

The statistics of the interaction matrix are scaled with
the factor of 1/d to ensure that the ensemble-averaged
interaction strength between species in the community
is

∑
i j〈Ai jαi j〉A,α/N = μ, and similarly for the variance∑

i j〈(Ai jαi j − μ/N )2〉A,α/N = σ 2, which is commonly the
case in fully connected versions of the model [32,33]. Our def-
inition of the model parameters requires σ 2 > 0 and |γ | � 1.

The correlation coefficient γ controls the symmetry of
interactions αi j and α ji in the original community, with γ = 1
for symmetric interactions (αi j = α ji for all i �= j), and γ =
−1 for antisymmetric deviations from the mean [αi j − μ/d =
−(α ji − μ/d ) for all i �= j]. If we were to further assume that
the pairs (αi j, α ji ) were jointly Gaussian distributed, then γ

has a simple relationship to the proportion p of interactions
in the community that are of predator-prey type: γ = cos(π p)
[44]. Generically, γ is a decreasing function of the proportion
of predator-prey-type links in the community.

III. BEHAVIOR OF THE MODEL

A. Dynamical mean-field theory and phase diagram

Depending on the model parameters (μ, σ, γ , and the de-
gree distribution pk), the dynamics in Eq. (1) exhibit three
distinct phases. As in existing GLV models with random all-
to-all interactions [32,33,45], there is a phase in which, for a
fixed interaction matrix, the dynamics converge to a unique
equilibrium independently of the initial abundances. Second,
there is a phase in which there are multiple stable fixed points
for any given interaction matrix, or the system can remain
volatile indefinitely. Finally, species abundances diverge in a
third phase.

The three phases are separated from one another by the on-
set of a linear instability and, second, by the onset of diverging
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FIG. 1. Stability plot for different values of γ for the network
model as described in Sec. II. The solid and dot-dashed lines show
the onset of diverging abundance and of the linear instability, respec-
tively, for uniformly distributed degrees. The dashed and dotted lines
indicate diverging abundances and linear instability for the model
on graphs without degree heterogeneity (pk = δk,d ). Different colors
represent different choices of γ as indicated in the legend. For any
one model the system is stable in the area to the left of the solid or
dashed curves (diverging abundance), and below the dot-dashed or
dotted line (linear instability). The average degree is d = N/4 for all
models shown. For the model with uniform degree distribution we
use w = 0.5N . All lines in the stability plot are computed from the
theory, derived in the limit N → ∞.

abundances. We give an overview of our results for the phase
diagram of the model in Fig. 1. As discussed in Refs. [46,47],
there are other possible regimes when the interactions do not
scale with the system size as above. However, we do not
consider these regimes in this work.

The focus of our analytical work is on the properties of
the phase in which the dynamics always converge to a unique
equilibrium (independent of the initial species abundances).
To this end, we employ a generating-functional method, which
has its roots in the physics of disordered systems [48–51],
to derive dynamical mean-field equations for the time depen-
dence of the abundances. Dynamical mean-field theory has
been successfully applied to ecological models since the work
of Ref. [52] in the context of replicator equations and since
the work of Ref. [32] in the context of the GLV equations.

In most previous models, the DMFT formalism produces
a single effective process, which describes the dynamics of
a "typical" species abundance. The statistics of this effective
species mirror those of the entire community. In this work,
because species in the original community are distinguishable
by their degree, there is an effective process representing
the typical behavior of species of each possible degree. Our
treatment here follows that used to analyze a previous model
in which species were distinguished not by their degree, but
by their position in a hierarchy [44]. We note that our analysis,
which applies most directly to the Chung-Lu model, assumes
that d � 1, so that the network is not sparse. Our theory also
applies to networks other than those constructed according to
the Chung-Lu model, provided that d � N (see Appendix F).

B. Characterization of the unique-equilibrium phase

In the unique-equilibrium phase, we can use the DMFT
equations to find the abundance distribution of species that
have a particular degree k in the original community. The
derivation of the DMFT equations, as well as the analysis of
the fixed point, can be found in Appendix A.

The abundance x�
k of a typical species with degree k at

the fixed point is a random variable with a clipped Gaus-
sian distribution. The fixed-point abundances satisfy x�

k (z) =
max[0, x�+

k (z)], where the nonzero abundances satisfy

x�+
k (z) =

1 + μ k
d

∑
k′ pk′ k′

d Mk′ + zσ
√

k
d

∑
k′ pk′ k′

d qk′ + h

1 − γ σ 2 k
d

∑
k′ pk′ k′

d χk′
.

(3)

The quantity z is a zero-mean, unit-variance Gaussian random
variable, and h is an external field used to define the response
function χk below. At the end of the calculation, and in all
simulations, we set h = 0. The quantities Mk and qk are the
first and second moments of the distribution of x�

k , respec-
tively. These objects are determined self-consistently from
their definitions

Mk =
∫

x�
k>0

dz f (z) x�
k (z),

qk =
∫

x�
k>0

dz f (z) x�
k (z)2,

χk =
∫

x�
k>0

dz f (z)
∂x�

k (z)

∂h
, (4)

where f (z) = exp(−z2/2)/
√

2π is the probability density
function of the standard normal distribution. For given model
parameters, we can solve Eqs. (3) and (4) numerically to
yield the values of the Mk, qk , and χk , for k = kmin, . . . , kmax

(where we write kmin, kmax for the lowest and highest degree in
the network, respectively). These quantities in turn yield the
abundance distributions, i.e., the distributions for the different
x�

k . We also define the probability of survival for species that
have degree k in the original community,

φk =
∫

x�
k>0

dz f (z), (5)

as well as the community-wide abundance and survival prob-
ability,

M =
∑

k

pkMk, φ =
∑

k

pkφk. (6)

Figure 2 confirms the validity of the fixed-point solution
from Eqs. (3) and (4). The predictions for the average abun-
dance, survival rate, and total abundance distribution across
the community match the results of simulations. We also
show the prediction for the abundance distribution from a
theory which does not take the full network structure into
account, but instead assumes a homogenous network, where
each species has the same expected degree d . That is, we set
pk = δk,d , where δk,d is the Kronecker delta. As we can see
from Fig. 2, the graph with homogenous expected degrees
does not share the same abundance distribution as when pk
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FIG. 2. (a) Overall survival probability φ and (b) mean abun-
dance M in the community for varying variance of interaction
strength σ . (c) The abundance distribution of species with degree
k is a clipped Gaussian, and the average of all such curves gives the
abundance distribution of the community as a whole (solid orange
curve; see Appendix A 2 for details). The prediction from the model
with network pk = δk,d (i.e., a network with homogeneous expected
degree) with the same mean, variance, correlation, and average de-
gree d is shown as a yellow dotted curve. For all plots, the degree
distribution is uniform, and the parameters are μ = −3, w = 0.45N ,
and d = N/4 and γ is as indicated in the legend. In (a) and (b),
N = 1000 and markers are the average over 10 runs of the dynamics.
In (c), σ = 1 and N = 5000, and the histogram is the result of a
single run of the dynamics. The large spike at zero abundance is due
to species which have died.

is a uniform distribution, confirming the importance of degree
heterogeneity in the theory.

C. Onset of instability

The analytical results presented in Sec. III B are only valid
in the phase with a unique equilibrium. In Appendix C, we
find the boundary of this stable regime in terms of the param-
eters of the model.

The onset of the diverging phase for given model param-
eters (μ, σ, γ , and pk) is found by solving the fixed-point
equations (4), together with the additional condition that the
community average abundance M diverges.

To identify the point at which the dynamics become lin-
early unstable, we consider a small random perturbation to
the fixed-point abundances x�

k (t ) = x�
k + εyk (t ). In the stable

regime, this perturbation will decay to zero. In the unstable
phase, the abundances will not in general return to x�

k after be-
ing perturbed. In Appendix C, we find that such a perturbation
will eventually decay to zero provided the following condition
holds:

σ 2

d2

∑
k

pk
k2χ2

k

φk
< 1. (7)

That is to say, the system is stable against linear perturbations
if this inequality is satisfied, and is not otherwise.

Solving the fixed-point equations [Eqs. (4)] simultaneously
with the condition obtained from setting the left-hand side of
the inequality in Eq. (7) equal to one gives us the boundary of
the stable and linearly unstable phase. In the fully connected

FIG. 3. Structure of the interaction matrix and corresponding
degree sequence in the original pool of species vs their counterparts
in the surviving community. Pink strips indicate which species go
extinct in the course of the dynamics, and are hence removed from
the community. In this example (counting from the top row of Ai jαi j),
S� = {1, 2, 4, 5, 7, 10}. The degree sequence among the survivors is
not simply the sequence of original degrees restricted to surviving
species, because some of the survivors’ interaction partners also die
out. Generally, the degree of any extant species in the surviving
community will be lower than its original degree.

system, the condition for the onset of the linear instability re-
duces to σ 2φ(1 + γ )2 < 1, which has been derived previously
using both DMFT [32] and the static cavity method [33].

IV. PROPERTIES OF THE SURVIVING COMMUNITY

We have established the analytical theory for describing
the overall properties of the surviving community, as well
as the conditions under which this theory is valid. We now
turn our attention to underlying statistics of the network and
the interactions of surviving community. Specifically, in this
section we will quantify how the survival rates, abundances,
and interaction strengths between species depend on their
connectivity.

Throughout this section, we write A�, k�
i , p�, and α� for

the adjacency matrix, the degree (connectivity) of a species i,
the degree distribution, and the matrix of interaction strengths
in the surviving community, respectively. We also write N�

for the number of species in the surviving community, and
S� for the set of all persisting species. We emphasize that
A�, k�

i , p�,α� are not the same as the corresponding quan-
tities in the original community, A, ki, p,α. The differences
between the two are the result of the interaction-dependent
species extinctions that occur during the course of the dy-
namics. The relationship between Ai jαi j , ki and A�

i jα
�
i j , k�

i is
illustrated in Fig. 3.

A. Structure of the network

In this section we will use the statistics of A�
i j to find

expressions for the degree of a species in the surviving com-
munity, given its degree in the original community, as well
as the degree distribution in the surviving community. One
crucial observation that will aid us in doing this is the fol-
lowing. The probability of any two species interacting in the
surviving community (i.e., conditioned on the survival of both
species) is kk′/(dN ), where k, k′ are the species degrees in the
original community. This is because, to leading order in 1/d ,
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FIG. 4. Degree distribution in the surviving community (tall pink
distribution) and the original species pool (flat orange distribution).
The degree distribution in the original community is uniform, while
the degree distribution in the surviving community is given by
Eq. (9). Parameters are the same as Fig. 2(c). The inset shows the
degree sequence in the surviving community as a function of the
degree sequence in the original community. Bars and markers are
computed from a single run of the dynamics with N = 5000. To
avoid too many points in the inset, we only display markers for 1 in
every 250 species in the surviving community. No average is taken.

the survival of different species can be treated as independent
events. We discuss this in more detail in Appendix E.

One notes that although the conditional probability that
species interact given their survival is trivially related to their
interaction probability in the original pool (they are equal),
the probability that both species actually survive is dependent
on their respective degrees. This leads to nontrivial changes in
the network structure.

The expected degree of a surviving species, given its degree
in the original community, can be computed from our expres-
sion for the probability of any two species interacting in the
surviving community (see Appendix E 3 for details). We find,
for the expected degree,

E[k�
i | ki, i ∈ S�] = rki, (8)

where E[· · · ] denotes the combined average over A and α,
and where r = ∑

k pkφkk/
∑

k pkk is the survival probability
of the neighbors of an arbitrarily chosen species in the original
community. In Appendix E, we further show that the variance
E[(k�

i )2 | ki, i ∈ S�] − E[k�
i | ki, i ∈ S�]2 is subleading in 1/d .

Hence, the probability distribution of species’ degrees in the
surviving community, given that they had degree k in the
original community, is highly concentrated around the mean
value given in Eq. (8). This can be seen in the Fig. 4 inset,
which shows a scatter plot of the points (k�

i , ki ) for i ∈ S� for
one particular instance of A and α (i.e., there is no average
performed). We see an almost perfect linear relationship be-
tween k� and k with very little fluctuation. From Eq. (8), the
gradient of this line is r.

Using Eq. (8), we can find a compact expression for the
degree distribution in the surviving community, p�

k� . We
also use the fact that, for many possible degrees and large
N , the integer spacing between different possible degrees
effectively becomes a continuum. For this reason, we define

P�(k�/N ) = N p�
k� and P(k/N ) = N pk . We can express P�(κ�)

(where κ� = k�/N is a variable between 0 and 1) in terms of
the original degree distribution P(κ ) and survival rate as

P�(κ�) = 1

φr



(
κ�

r

)
P

(
κ�

r

)
, (9)

where 
(k/N ) = φk . This can be understood as follows:
the probability P�(κ�) that a randomly selected species
in the surviving community has degree k� is proportional
to the product of the probabilities that a randomly selected
species in the initial pool has degree k = k∗/r and that this
species survives [P(κ�)
(κ�)]. The factor of 1/(φr) is a
normalization constant, ensuring that

∫
P�(κ�)dκ� = 1 (see

Appendix E 3 for details).
In Fig. 4, we show the effect of extinctions (brought about

due to the constraint of feasibility) on a community interacting
on a network that initially has a uniform degree distribution.
It is clear that, relative to the initial degree distribution, there
are more species with low degree than with high degree in the
surviving community. This is driven by the fact that highly
connected species in the original community are less likely to
survive than species with low degree in competitive commu-
nities (i.e., for μ < 0; see Appendix B and the next section
for details).

Additionally, in Appendix F we show how Barabási-Albert
networks are deformed by the extinction process. This also
serves as a test of the validity of our approach to more general
networks with weak degree correlations [53], to which an
annealed network approximation is expected to apply [31,43].
Furthermore, we demonstrate in Appendix G how we can
choose the initial degree distribution such that the final net-
work of surviving species has a designated form. In particular,
we produce a community whose final network of interactions
is scale-free.

B. Survival rates and abundances as functions of degree

As we see in Fig. 5(a), species with higher initial degree
are less likely to survive. This can be understood in broad
terms from Eq. (3). The abundance x�

k is a random variable
drawn from a clipped Gaussian distribution. That is, if the
Gaussian variable z is such that the right-hand side (RHS) of
Eq. (3) is negative, the species does not survive. Given that
the factor multiplying z is proportional to

√
k and that the

factor multiplying μ < 0 is proportional to k, we see that as k
increases, it is more likely that the RHS of Eq. (3) is negative.
Hence, a higher fraction of species go extinct for higher k.
This is always the case for μ < 0 (see Appendix B).

Figure 5(b) shows the expected abundance Mk� of species
as a function of their degree in the surviving community,
which in the case shown is also seen to be a decreasing
function of k�. This is not always guaranteed to be the case,
however, even for μ < 0. With that being said, in Appendix B,
we show that the region in parameter space for which the
system is stable, where μ < 0, and for which Mk� and k� are
positively correlated, is small. Hence, for μ < 0, only a small
range of parameters could give rise to a community in which
Mk� is an increasing function of k�. This general trend can
once again be understood from Eq. (3), where we see that the
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FIG. 5. (a) Survival rate as a function of degree in the original
community. (b) Abundance as a function of degree in the surviving
community. The survival rate is written as a function of degree in
the original community, rather than as a function of degree in the
surviving community. In contrast, the abundance of a species with a
given degree is an observable that requires only information about the
surviving community; hence we plot it as a function of k� rather than
k. The parameters are μ = −3, σ = 1.2, d = N/4, w = 0.45N, N =
2000, and the values of γ and the corresponding colors are the same
as in Fig. 2 (blue, γ = −1; orange, γ = 0). There is no curve with
γ = 1, as the system is then unstable for the given parameters. In
(b), the curves terminate at different values of k� because of the
differences in the limit of the degree sequence k� in the surviving
community. Markers are the average over 200 runs of the dynamics,
and the solid lines are analytical predictions.

term proportional to μ, which determines the typical value of
x�

k , is also proportional to k.
The fact that φk and Mk� are decreasing functions of degree

has consequences for the relationship between species and
their neighbors in the community. In Sec. IV A, we introduced
the probability of survival of the neighbors of a species in the
original community r = ∑

k pkφkk/
∑

k pkk. We now show
that if φk decreases with k, then r < φ. That is, the probability
of survival of the neighbors of a species is lower than the
overall probability of species survival.

To see this, we first observe that if φk decreases with k,
then the covariance of φk and k (computed with respect to the
degree distribution pk) must be negative. That is,

∑
k pkφkk −

(
∑

k pkk)(
∑

k′ pk′φk′ ) < 0. We arrive at our claim after divid-
ing both sides of the inequality by

∑
k pkk and recalling that

φ = ∑
k pkφk .

By an identical argument, we can conclude that if Mk� is a
decreasing function of k�, then the average abundance of the
neighbors of a species in the community is lower than the av-
erage abundance in the surviving community as a whole. Fol-
lowing the colloquial statement of the famous friendship para-
dox, "your friends are more popular than you are," we could
say that “species’ neighbors are less populous than they are.”

In Appendix F, we show that these same trends of φk and
Mk� hold in the case of a Barabási-Albert network.

C. Interaction strengths in the surviving community

It is known that intricate correlations between interaction
coefficients, which are not present in the original community,
emerge in the surviving communities of fully connected GLV
systems [33,36,37]. In this section, we show that in network
GLV systems, the dynamics also induce correlations between
the degree of a species and its interaction coefficients in the

surviving community, even though there are no such correla-
tions in the initial community.

To quantify this effect, we characterize the strength of
interactions "coming into" and "going out of" a species with
degree k in a general network as

μin
k = d

Nk

∑
i∈Sk

1

k

∑
j

Ai jαi j,

μout
k = d

Nk

∑
i∈Sk

1

k

∑
j

A jiα ji, (10)

where we write Sk for the set of species that have degree
k and Nk for the number of species in this set. Because
the network and interaction strengths are independent in the
original community, the ensemble average in and out inter-
action strengths are both equal to 〈μin/out

k 〉A,α = μ for any
value of k. However, as Fig. 6 demonstrates, when we mea-
sure these same quantities in the surviving community [i.e.,
μ�in

k� = (d�/N�
k� )

∑
i∈S�

k�

∑
j∈S� A�

i jα
�
i j/k� and similar for μ�out

k� ],
we find that they depend on the degree k�.

We can understand the relationship between the in and out
interaction strengths and connectivity by examining Fig. 6(b).
In this case, γ = 0, and therefore there is no imposed correla-
tion between the in (αi j) and out (α ji) interaction coefficients,
so we are better able to disentangle the effects at play. We
remind the reader that we consider competitive interactions
with μ < 0.

Let us begin with the incoming interactions. We see that
the average incoming interaction becomes less negative with
degree k�. We attribute this primarily to the differing survival
rate of species, depending on degree. We can see this as
follows. Almost all species with small k survive (i.e., φk ≈ 1),
and so we expect the average incoming interactions to be same
in the surviving and initial communities for species with small
k� (i.e., μ�in

k� ≈ μ). With increasing value of k�, the survival
rate of the species decreases (see Fig. 5). Because the species
that survive are those with the most favorable interactions, we
find the upwards trend of μ�in

k� with k�.
The average outgoing interaction strength exhibits the op-

posite trend to the incoming interaction strength in Fig. 6(b).
That is, low-degree species have more positive outgoing in-
teractions than high-degree species. This can be explained as
follows. First we note that low-degree species have higher
abundance (see Sec. IV B), and therefore have a greater impact
on the probability of their neighbors’ survival. This means
that the neighbors of low-degree species are more likely to
go extinct than neighbors of species with high degree (which
have comparatively low abundance). As was the case with the
incoming interactions, it is those species who interact more
favorably that survive. Because neighbors of species with low
degree are more likely to go extinct, μ�out

k� is a decreasing
function of k�.

The trends in the other panels of Fig. 6 can be understood
as a kind of superposition of the trends in Fig. 6(b), since a
nonzero γ connotes a correlation between the incoming and
outgoing interactions of a species. For example, when γ = 1,
the outgoing and incoming interactions must be identical.
Hence, μ�out

k� = μ�in
k� and the corresponding curve in Fig. 6(c)

is seen to be an "average" of the upwards and the downwards

014318-6



INTERACTION NETWORKS IN PERSISTENT … PHYSICAL REVIEW E 111, 014318 (2025)

FIG. 6. Average "in" and "out" interaction strength as a function of degree in the surviving community with (a), (b), and (c) corresponding
to γ = (−1, 0, 1), respectively. In (a) and (b), the curves with positive gradient show the "in" interaction strengths and the curves with negative
gradient show the "out" interaction strengths. In (c), the in and out interactions are exactly equal. A horizontal black line has been added to all
panels to indicate the mean interaction strength in the original community. Parameters are μ = −3, σ = 0.6, d = N/4,w = 0.45N , N = 2000.
Markers are the average of 200 runs of the simulation. Solid lines are analytical predictions (see Appendix D for the explicit expressions).

trends in Fig. 6(b). On the other hand, for γ = −1, the fluc-
tuations in the incoming and outgoing interactions are exactly
the negative of each other [i.e., αi j − μ/d = −(α ji − μ/d )],
hence the mirror-image effect in Fig. 6(a).

Although we have provided a qualitative rationale of the
trends in Fig. 6, we are also able to provide direct quantitative
evidence of their causation using the cavity method (in a
similar way to Refs. [36,37]). That is, we see directly how the
survival bias of species affects the incoming interactions, and
how the species abundance affects the outgoing interactions.
The cavity method also yields the analytical results in Fig. 6.
The details are technical, and so we direct the interested reader
to Appendix D for more information.

V. DISCUSSION

In this work, we have studied an extension of the popular
generalized Lotka-Volterra equations by incorporating ran-
dom network structure with an arbitrary degree distribution.
We have found that the network and interaction statistics
of the surviving community differ greatly from those of the
original community. This demonstrates that the condition of
feasibility, which linear models cannot guarantee, is a strong
constraint on the structure of ecological networks. To de-
rive our central results, we extended the usual dynamical
mean-field theory for generalized Lotka-Volterra dynamics to
describe heterogeneous interaction statistics, in a similar way
to our previous work in Ref. [44].

Most importantly, we demonstrated that, in the surviving
community, there are correlations between the connectivity of
a species and its interaction coefficients. These correlations
are a fingerprint of the dynamics, which results from con-
straining a subset of the original species to coexist, and they
are not present in the initial pool of species from which the
surviving community is formed.

Direct tests of the relations between the network and result-
ing interaction statistics in real ecological communities could
in principle be attempted using modern inference techniques
[54–56]. While the network structure of natural ecosystems
might differ from the assumptions in our model, and inferring
interaction coefficients for high-dimensional models such as

ours is not straightforward, it might still be possible to verify
some of our predictions, at least qualitatively. Perhaps the
most easily tested prediction in the current work, since it
does not involve measuring precise interaction coefficients,
is the one similar to the friendship paradox, namely, that the
neighbors of species in the interaction network typically have
a lower abundance than the focal species.

By finding an expression for the degree distribution in the
surviving community, we were able to go beyond community-
wide properties to probe how degree-dependent statistics vary
across the community. We found that, for a wide range
of model parameters, the survival rates and abundance of
species are negatively correlated with their degree. This in
turn implied that a given species’ neighbors were more likely
to survive, and were more abundant on average, than said
species. We also found that the degree distribution in the
surviving community contained relatively few species with
high degree, and more species with low degree, than in the
original community. This offers a possible explanation for
this same trend found in real ecological networks [23,57,58],
namely, that a skewed degree distribution may partially be a
consequence of a community’s feasibility.

We note that in Ref. [59], Serván et al. observe that
network structure plays only a small role in the outcome
of the final community composition (specifically, the aver-
age survival rate) in a related version of the Lotka-Volterra
model. In the aforementioned work, species have varying
intrinsic growth rates, which can be negative and turn into
an effective death rate. Hence, species can be driven to ex-
tinction even in the absence of interactions. In Ref. [59] it is
thus mostly the intrinsic growth (or death) rate of a species
that determines survival, and the network structure plays a
secondary role. In our work, intrinsic growth rates are all
positive and do not vary across species. If there are no in-
teractions, all species survive. The survival of a species is
thus determined solely by its interactions. Hence, the network
has a more pronounced effect. Loosely speaking, Ref. [59]
and our work can be seen as analyzing two extremes on a
scale of comparatively less influential interactions to strongly
influential interactions. As one increases the significance of
interactions in the model, one sees that the precise network
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structure has more of an effect on the nature of the surviving
community.

There are many opportunities for extensions to this work.
Our model incorporates only the most simple random network
model, but real ecological networks are known to be much
more complex. It would be interesting to see how additional
structures, such as assortativity, intervality, or particular mo-
tifs in the initial network of interactions, are modified when
we constrain the network to be that of a feasible equilibrium
[60–64]. We also know that ecological networks consist of
both directed and undirected links (that is, the adjacency
matrix is not symmetric in general) [65,66], which would
pose a simple mathematical extension to the present work.
Finally, ecological networks are known to straddle the line
between being dense and sparse, with connectivity widely
reported to be in the range 0.05–0.3 [11,23]. Our work
could be extended to include sparse corrections for the case
where the connectivity is very low (using techniques sim-
ilar to, e.g., Ref. [67]). In particular, we expect a sparse
surviving network to have more significant degree correla-
tions than the dense model, which would perhaps offer a
mechanism for the disassortativity found in real ecological
networks [65].

Note added. We would like to highlight Refs. [38,39],
which address a similar topic to our own work. While all three
papers employ a "heterogeneous mean-field approximation,"
the focus of each work is quite different. In particular, Refs.
[38,39] do not study the structure of the surviving commu-
nity network. Instead, they characterize in detail the rates of
survival of species in the initial community, as we will now
briefly describe.

Reference [39] demonstrates a nonmonotonic relationship
between survival rate and mean interaction strength. In partic-
ular, it is possible for the survival rate to decrease for more
cooperative communities, rather counter to intuition, and also

that survival probability can have a minimum as a function of
connectivity.

The author of Ref. [38] makes the observation that purely
competitive or purely cooperative communities (in which
σ = 0) require species to have a maximum or minimum (re-
spectively) connectivity in order to survive. It is also shown
how this can be used to explain survival rates in heteroge-
neously interacting communities (σ > 0). The author also
studies the phase with diverging abundances, and connec-
tions with economics are made via the calculation of Gini
coefficients.
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APPENDIX A: DERIVATION OF THE DMFT EFFECTIVE
DYNAMICAL EQUATIONS

To derive an effective set of mean-field equations de-
scribing the time dependence of species abundances in the
community, we start with the Martin-Siggia-Rose-Janssen-de
Dominicis (MSRJD) [49–51,68] generating functional of the
Generalized Lotka-Volterra (GLVE) dynamics in Eq. (1)

Z[ψ] =
∫

DxD x̂ exp

⎡⎣i
∑

i

∫
dt x̂i(t )

⎛⎝ ẋi(t )

xi(t )
− 1 + xi(t ) −

∑
j

Ai jαi jx j (t ) − hi(t )

⎞⎠ + i
∑

i

∫
dtxi(t )ψi(t )

⎤⎦, (A1)

where the adjacency matrix A and interaction matrix α are described in the main text. The functions hi(t ) and ψi(t ) do not appear
in the dynamics in Eq. (1). These are source fields that are set to zero at the end of the calculation. We will average Z[ψ] over
the distribution of both the network (A) and the interactions (α). Like in Ref. [32], the resulting disorder-averaged functional
can then be manipulated into a form that is recognizable as the generating functional of a different, decoupled set of dynamical
equations. This set of equations describes the time dependence of the abundance of a typical species with degree k in the original
community.

All the disorder in Eq. (A1) is in the term containing the interaction coefficients Ai jαi j . The average of this term over the
distributions of α and A is carried out as follows:〈

exp

[
i
∑

i j

∫
dtAi jαi j x̂i(t )x j (t )

]〉
A,α

=
∏
i< j

〈
exp

[
i
∫

dtAi j (αi j x̂i(t )x j (t ) + α jîx j (t )xi(t ))

]〉
Ai j ,(αi j ,α ji )

=
∏
i< j

(
1 + kik j

dN

(〈
exp

[
i
∫

dt (αx̂i(t )x j (t ) + β x̂ j (t )xi(t ))

]〉
(α,β )

− 1

))

= exp

⎡⎣1

2

∑
i j

ln

(
1 + kik j

dN

(〈
exp

[
i
∫

dt (αx̂i(t )x j (t ) + β x̂ j (t )xi(t ))

]〉
(α,β )

− 1

))⎤⎦,

(A2)
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where we have written 〈· · ·〉A,α for a joint average over all elements of the matrices A α, and 〈· · ·〉(αi j ,α ji ) for the average over the
joint distribution of the specific elements αi j and α ji. The joint distribution of (αi j, α ji ) does not depend on i or j, as the pairs
(αi j, α ji ) are drawn independently for each i and j. To make this lack of dependence explicit, we have replaced αi j → α and
α ji → β between the second and the third lines.

To decouple the i and j indices from the final expression in Eq. (A2), for each degree k in the original community network,
we introduce the following functional:

Pk[x, x̂] = 1

Nk

∑
i∈Sk

∏
t

δ(x(t ) − xi(t ))δ (̂x(t ) − x̂i(t )), (A3)

where i ∈ Sk indicates that species i has degree k in the original community and Nk = pkN is the number of species with degree
k in the original community [pk is the degree distribution in the original community]. For each k, the functional Pk[x, x̂] is the
probability that the functions x(t ) and x̂(t ) are equal to the functions xi(t ) and x̂i(t ), respectively, which are constrained to follow
the dynamics of species with degree k. With this definition, we can write the disordered part of the generating functional as〈

exp

[
i
∑

i j

∫
dtAi jαi j x̂i(t )x j (t )

]〉
A,α

= exp

[
N2

2

∑
kk′

pk pk′

∫
DxD x̂DyD ŷPk[x, x̂]Pk′[y, ŷ]

× ln

(
1 + kk′

dN

(〈
exp

[
i
∫

dt (αx̂(t )y(t ) + β ŷ(t )x(t ))

]〉
(α,β )

− 1

))]
. (A4)

We enforce the definition of Pk[x, x̂] by inserting delta functions in their complex exponential form into the generating functional:

1 ∝
∫

DPkDP̂k exp

⎡⎣i
∑

k

Nk

∫
DxD x̂P̂k[x, x̂]

⎛⎝Pk[x, x̂] − 1

Nk

∑
i∈Sk

∏
t

δ(x(t ) − xi(t ))δ
(̂
x(t ) − f̂i(t )

)⎞⎠⎤⎦,

∝
∫

DPkDP̂k exp

⎡⎣i
∑

k

Nk

∫
DxD x̂P̂k[x, x̂]Pk[x, x̂] − i

∑
i∈Sk

P̂k[xi, x̂i]

⎤⎦. (A5)

With these definitions enforced, the disorder-averaged generating functional of Eq. (1) takes the following form:

〈Z[ψ]〉A,α ∝
∫

DxD x̂DPDP̂ exp

[
i
∑

i

∫
dt x̂i(t )

(
ẋi(t )

xi(t )
− 1 + xi(t ) − hi(t )

)
+ i

∑
i

∫
dtxi(t )ψi(t )

]

× exp

[
N2

2

∑
kk′

pk pk′

∫
DxD x̂DyD ŷPk[x, x̂]Pk′[y, ŷ]

× ln

(
1 + kk′

dN

(〈
exp

[
i
∫

dt (αx̂(t )y(t ) + β ŷ(t )x(t ))

]〉
(α,β )

− 1

))]

× exp

⎡⎣iN
∑

k

pk

∫
DxD x̂P̂k[x, x̂]Pk[x, x̂] − i

∑
i∈Sk

P̂k[xi, x̂i]

⎤⎦. (A6)

To proceed, we could explicitly perform the average over the joint distribution of the interaction strengths (α, β ) and simplify
the resulting expression. If we do this for the interaction statistics in Eq. (2), to leading order in powers of 1/d , the integrand is
of the form exp[NS]. The integral can then be evaluated with a saddle-point approximation for large N . Even though our interest
in the main text is in dense networks, where retaining only leading terms in powers of 1/d is valid, we can proceed without
having to make this assumption. That is, we can evaluate the integral with a saddle-point equation without assuming the network
is dense. To do this, we simply assume that the term with a prefactor of N2 in the integrand is O(N ). With this assumption,
the following functional (proportional to the joint cumulant generating function of Ai jαi j and Ajiα ji) is O(N0) for each
k and k′:

fkk′[x, x̂, y, ŷ] = N ln

(
1 + kk′

dN

(〈
exp

[
i
∫

dt (αx̂(t )y(t ) + β ŷ(t )x(t ))

]〉
(α,β )

− 1

))
assumption= O(N0). (A7)

We note that if this functional is not O(N0), then the following steps in our derivation are not valid. This assumption is very
similar to that in Ref. [69] in that we make an assumption about the large-N behavior of a cumulant generating function of the
interaction coefficients, rather than of the coefficients themselves. Our expression for the disorder-averaged generating functional
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now reads (the definition of fkk′ is just notation, we do not enforce its definition with delta functions)

〈Z[ψ]〉A,α ∝
∫

DPDP̂

× exp

[
N

2

∑
kk′

pk pk′

∫
DxD x̂DyD ŷPk[x, x̂]Pk′[y, ŷ]fkk′[x, x̂, y, ŷ]

]

× exp

[
iN

∑
k

pk

∫
DxD x̂P̂k[x, x̂]Pk[x, x̂]

]

× exp

[
N
∑

k

pk ln
∫

DxD x̂ exp

[
i
∫

dt x̂(t )

(
ẋ(t )

x(t )
− 1 + x(t ) − hk (t )

)
− iP̂k[x, x̂

]
+ i

∫
dtx(t )ψk (t )]

]
, (A8)

where we have supposed that hi(t ) and ψi(t ) only depend on the degree of species i in order to be able to factorize the
final term. That is, hi(t ) = hk (t ) and ψi(t ) = ψk (t ) for all species i with degree k. We can evaluate this integral with a
saddle-point approximation for large N . First, taking the derivative of the exponent with respect to the hatted functionals
P̂k gives

Pk[x, x̂] =
exp

[
i
∫

dt x̂k (t )
(

ẋk (t )
xk (t ) − 1 + xk (t ) − hk (t )

)
− iP̂k[xk, x̂k] + i

∫
dtxk (t )ψk (t )

]
∫
DxD x̂ exp

[
i
∫

dt x̂(t )
(

ẋ(t )
x(t ) − 1 + x(t ) − hk (t )

)
− iP̂k[x, x̂] + i

∫
dtx(t )ψk (t )

] , (A9)

where the subscript in xk (t ) indicates that the abundance xk (t ) is constrained to be the trajectory of a typical species with degree
k; we justify this interpretation further on in the derivation. The unhatted saddle equation (taking derivatives of the exponent
with respect to Pk) is

P̂k[x, x̂] = i
∑

k′
pk′

∫
DyD ŷPk′ [y, ŷ]fkk′[x, x̂, y, ŷ]. (A10)

Substituting Eq. (A9) into Eq. (A10), we arrive at the following self-consistent functional equation for P̂k:

P̂k[x, x̂] = i
∑

k′
pk′

∫
DyD ŷ fkk′ [x, x̂, y, ŷ] exp

[
i
∫

dt ŷ(t )
(

ẏ(t )
y(t ) − 1 + y(t ) − hk′ (t )

)
− iP̂k′[y, ŷ] + i

∫
dty(t )ψk′ (t )

]
∫
DyD ŷ exp

[
i
∫

dt x̂(t )
(

ẏ(t )
y(t ) − 1 + y(t ) − hk′ (t )

)
− iP̂k′ [y, ŷ] + i

∫
dty(t )ψk′ (t )

] . (A11)

We now rewrite this as

P̂k[x, x̂] = i
∑

k′
pk′ 〈 fkk′ [x, x̂, y, ŷ]〉(y)

k′ , (A12)

where 〈· · ·〉(y)
k′ stands for the ratio of functional integrals in Eq. (A11), with (· · · ) in place of fkk′ [x, x̂, y, ŷ]. In particular, we

point out that this means the quantity 〈 fkk′ [x, x̂, y, ŷ]〉y does not depend on arguments y, ŷ, or y, but it does depend on the degree
k. To interpret 〈· · ·〉(y)

k , we compare functional derivatives of the expression for Z in Eqs. (A1) and (A8) with respect to ψi(t ) and
hi(t ) to find (in the limit of large N)

〈x(t )〉k = −i
1

Nk

∑
i∈Sk

∂〈Z[ψ]〉A,α

∂ψi(t )

∣∣∣∣
h=ψ=0

= 1

Nk

∑
i∈Sk

〈xi(t )〉A,α, (A13)

〈̂x(t )〉k = i
1

Nk

∑
i∈Sk

∂〈Z[ψ]〉A,α

∂hi(t )

∣∣∣∣
h=ψ=0

= 1

Nk

∑
i∈Sk

〈̂xi(t )〉A,α, (A14)

〈̂x(t )x(t ′)〉k = − 1

Nk

∑
i∈Sk

∂〈Z[ψ]〉A,α

∂hi(t )
ψi(t

′)
∣∣∣∣
h=ψ=0

= 1

Nk

∑
i∈Sk

〈̂
xi(t )xi(t

′)
〉
A,α

, (A15)

where we have dropped the superscripts (x) in, e.g., 〈x(t )〉(x)
k on the left-hand side (LHS) of the above equations as there is only

one dynamical variable which could be averaged over. We can do the same calculation for any other powers of x(t ) and x̂(t ).
Hence, 〈x(t )〉k is, in the large-N limit, equal to the average abundance of species with degree k in the community. Furthermore,
because Z[ψ = 0] = 1 [Eq. (A1) is the integral of a delta function when ψi(t ) = 0], derivatives of Z with respect to factors of h
only are all zero. Therefore, any averages containing only hatted variables vanish.
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At the saddle point, we can finally write the disorder-averaged generating functional as

〈Z[ψ]〉A,α ∝
∫

DxD x̂ exp

[
i
∑

k

pk

∫
dt x̂k (t )

(
ẋk (t )

xk (t )
− 1 + xk (t ) − hk (t )

)]

× exp

[∑
kk′

pk pk′ 〈 fkk′ [xk, x̂k, y, ŷ]〉(y)
k′ + i

∑
k

pk

∫
dtxk (t )ψk (t )

]
. (A16)

We now evaluate the functional fkk′ [x, x̂, y, ŷ], with the random matrix α as described in Sec. II of the main text. To leading
order in 1/N and 1/d , we find

fkk′ [xk, x̂k, y, ŷ] = i
kk′μ
d2

∫
dt (̂xk (t )y(t ) + ŷ(t )xk (t ))

− kk′σ 2

2d2

[(∫
dt x̂k (t )y(t )

)2

+
(∫

dt ŷ(t )xk (t )

)2
]

− kk′γ σ 2

d2

∫
dtdt ′̂xk (t )y(t )̂y(t ′)xk (t ′). (A17)

Averaging over the dynamics of y, and recalling that averages over only hatted variables equate to zero, we are left with

〈 fkk′ [xk, x̂k, y, ŷ]〉(y)
k′ = i

kk′μ
d2

∫
dt x̂k (t )〈y(t )〉k′ − kk′σ 2

2d2

∫
dtdt ′ (̂xk (t )̂xk (t ′)〈y(t )y(t ′)〉k′ + 2γ x̂k (t )xk (t ′)〈y(t )̂y(t ′)〉k′ ). (A18)

Substituting this into Eq. (A16), we recognize 〈Z[ψ]〉A,α as the generating functional of the following set of effective dynamical
equations:

ẋk (t ) = xk (t )

(
1 − xk (t ) + μk

d2

∑
k′

pk′k′Mk′ (t ) + γ σ 2k

d2

∑
k′

pk′k′
∫

dtGk′ (t, t ′)xk (t ′) + ηk (t )

)
, (A19)

where we have set hk (t ) = 0 and written 〈y(t )〉k = Mk (t ) and −i〈̂y(t ′)y(t )〉k = Gk (t, t ′). The quantities Mk (t ), Gk (t, t ′), and the
colored Gaussian noise term ηk (t ) are determined self-consistently via the following equations:

〈ηk (t )〉η = 0, 〈ηk (t )ηl (t
′)〉η = δkl

σ 2k

d2

∑
k′

pk′k′〈xk (t )xk′ (t ′)〉η, Mk (t ) = 〈xk (t )〉η, Gk (t, t ′) = δ〈xk (t )〉η
δηk (t ′)

. (A20)

The last of these relationships follows from writing down the
generating functional of the effective dynamics Eq. (A19)
without performing the average over the noise term ηk (t )
[which would simply return Eq. (A16)]. From this functional,
it is then clear that differentiation with respect to the noise
term "pulls down" a factor of −îxk (t ); hence we can replace
factors of −îx(t ) in Eq. (A16) with derivatives with respect to
the noise.

1. Fixed-point equations

As discussed in the main text, we can derive a closed set
of self-consistent equations for the abundance distribution in

the surviving community at a fixed point of the dynamics.
Suppose that the dynamics in Eq. (A19) reaches a fixed point
x�

k . In this case, the noise term will be a static, mean zero
Gaussian random variable with variance σ 2k/d2 ∑

k′ pk′k′qk ,
with qk = 〈(x�

k )2〉z. We also assume that the system’s re-
sponse function is a function of time differences only in
this regime, so that Gk (t, t ′) = Gk (t − t ′), which means we
can write

∫
dt ′Gk (t, t ′)xk (t ′) = χkx�

k for χk = ∫
dτgk (τ ). The

fixed-point abundance distribution of x�
k is then given by

(we have added back in the factor of h from the original
generating functional so that we can cleanly write down the
definition of χk)

x�
k (z) = max

(
0,

1 + μk
∑

k′ pk′k′Mk′/d2 + zσ
√

k
∑

k′ pk′k′qk′/d + h

1 − γ σ 2k
∑

k′ pk′k′χk′/d2

)
. (A21)

By carefully evaluating the definitions of the parameters Mk, qk , and χk , we arrive at the fixed-point equations in the main text,
which we repeat here:

Mk =
∫

x�
k>0

dz f (z)x�
k (z), qk =

∫
x�

k>0
dz f (z)x�

k (z)2, χk =
∫

x�
k>0

dz f (z)
∂x�

k (z)

∂h
, (A22)

where f (z) = exp(−z2/2)/
√

2π is the probability density
function of the standard normal distribution.

We now expand out the definitions in Eqs. (A22) to find
the explicit set of equations which we can numerically solve.
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Expanding the definitions gives [note that the integration
region x�

k > 0 needs to be converted into an integration region
over z using Eq. (A21)]

χk = w0(�k )

1 − γ σ 2k
d2

∑
k′ pk′k′χk′

,

Mk = �kw1(�k ),

qk = �2
k w2(�k ), (A23)

where we have defined the shorthands

�k = σ
√

k
∑

k′ pk′k′qk′/d

1 − γ σ 2k
∑

k′ pk′k′χk′/d2
,

�k = 1 + μk
∑

k′ pk′k′Mk′/d2

σ
√

k
∑

k′ pk′k′qk′/d
,

wl (�k ) =
∫ �k

−∞
dz f (z)(�k − z)l . (A24)

We also define the probability of survival for species that have
degree k in the original community,

φk =
∫

x�
k>0

dz f (z), (A25)

as well as the community-wide abundance and survival
probability,

M =
∑

k

pkMk, φ =
∑

k

pkφk . (A26)

Equations (A23) can be numerically solved to find the
fixed-point parameters for specific degree k. The integrals
defining wl (�k ) can be explicitly evaluated. For l = 0, 1, 2
we have

w0(x) = 1

2

(
1 + erf

(
x√
2

))
,

w1(x) = P(x) + 1

2
x

(
1 + erf

(
x√
2

))
,

w2(x) = xP(x) + 1

2
(1 + x2)

(
1 + erf

(
x√
2

))
. (A27)

Practically, we solve the fixed-point equations by first
defining the following variables:

U = μ

d2

∑
k′

pk′k′Mk′ ,

S =
√

σ 2

d2

∑
k′

pk′k′qk′ ,

T = γ σ 2

d2

∑
k′

pk′k′χk′ , (A28)

and then by using Eq. (A23) to write the following set
of equations in U, S, and T :

U = μ

d2

∑
k′

pk′ (k′)
3
2 S

1 − T k′ w1

(
1 + Uk′

S
√

k′

)
,

1 = σ 2

d2

∑
k′

pk′ (k′)2

(1 − T k′)2
w2

(
1 + Uk′

S
√

k′

)
,

T = γ σ 2

d2

∑
k′

pk′k′

1 − T k′ w0

(
1 + Uk′

S
√

k′

)
. (A29)

This reduces the original 3N fixed-point equations down
to just three. These three equations are then solved using
scipy.optimize.root in python, with an initial guess U, S, T
either determined by a previously found solution with sim-
ilar values of the parameters μ, σ, γ , pk , or by running the
GLV dynamics themselves for small N about 50 times to
obtain empirical estimates for φk, Mk , and qk . We then use
the relation (derived from the fixed-point equations) χk =
Mkφkw1(w−1

0 (φk ))/
√

σ 2k
∑

k′ pk′k′qk′/d2 to determine a sen-
sible initial guess for χk , which in turn gives initial guesses
for U, S, and T . Here, w−1

0 is the inverse function of w0.
From U, S, and T , we can recover χk, Mk , and qk using

Eqs. (A23).

2. The abundance distribution

The abundance distribution ADk (x) for species with degree
k in the original community is derived from Eq. (A21). It has
the general form ADk (x) = (1 − φk )δ(x) + �(x)Pmk ,�k (x),
where �(x) = 1 if x > 0 and is zero otherwise. Pmk ,�k (x) is
a Gaussian probability density function (PDF) with mean mk

and variance �2
k , �k is defined in Eqs. (A24), and mk is given

by the following expression:

mk = 1 + μk
∑

k′ pk′k′Mk′/d2

1 − γ σ 2k
∑

k′ pk′k′χk′/d2
. (A30)

The community-wide abundance distribution AD(x), such
as the one plotted in Fig. 2 in the main text, is equal to
the weighted average of the individual degree distributions:
AD(x) = ∑

k pk ADk (x).

APPENDIX B: TREND OF φk and Mk� WITH DEGREE

In the main text, we claim that, for μ < 0, the survival rate
φk is always a decreasing function of the degree k, and that
the same is true for a wide range of parameters for Mk . In this
section we justify these claims.

1. Trend of φk with k

By definition, we can express the survival probability for
species with degree k in the original community as [see
Eqs. (A23)]

φk = w0(�k ), (B1)

where �k is defined in Eqs. (A24). The function w0 is an
increasing function of its argument. Hence, φk is an increasing
(decreasing) function of k precisely when �k is an increasing
(decreasing) function of k. For fixed model parameters, �k
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FIG. 7. Curves for which Mk� and k� are uncorrelated (dashed
lines). To the left of the dashed lines, Mk� and k� are negatively cor-
related, and to the right of the dashed lines Mk� and k� are positively
correlated. The area underneath the solid curves is stable, and the
area above is unstable (see Fig. 1 in the main text for more detail).

has the following functional dependence on the degree k:

�k = 1

S

(
1√
k

+ U
√

k

)
, (B2)

where S and U are defined in Eqs. (A28), and they do not
depend on k explicitly.

Differentiating Eq. (B2) with respect to k, we find that �k

is stationary in k when

k = 1

U
. (B3)

If μ < 0, then U < 0 also, and the LHS and RHS have op-
posite signs (all other components in the equation are positive
by definition), so there is no stationary point. Hence, φk is
a decreasing function of k. If, on the other hand, μ is posi-
tive, then φk is decreasing provided the LHS is smaller than
the RHS; if the LHS is larger, then the trend reverses. This
becomes increasingly likely for more positive μ and larger
abundances Mk .

2. Trend of Mk� with k�

We can follow the same procedure as for φk to find the
degree at which the abundance Mk has a stationary point. It is
stationary when

k = φk − Mk

Uφk + T Mk
, (B4)

where T is defined in Eqs. (A28). This condition is not
as straightforward to analyze as the equivalent condition
for the stationary point of φk in Eq. (B3). However,
we can still find the general trend of Mk� with k� by
noting (as we do in the main text) that the covariance
Cov(Mk� , k�) = (

∑
k� pk�Mk�k�) − (

∑
k� pk�Mk� )(

∑
k� pk�k�)

is negative whenever Mk� is a decreasing function of k�. In
Fig. 7, we plot the curve satisfying Cov(Mk� , k�) = 0 in the
(μ, σ 2) plane for different values of γ and fixed network
structure. Demonstrating that when μ < 0, only a small
range of parameters in the stable phase give rise to positive

correlations (right of the curve), hence our focus on this trend
in particular in the main text.

APPENDIX C: STABILITY

1. Diverging abundances

To numerically find the boundary between the fixed point
and the point at which the average abundance M diverges,
we first express the fixed-point equations (A23) in terms
of the new variables χk, M̃k = Mk/

√∑
k′ pk′qk′ , and q̃k =

qk/
∑

k′ pk′qk′ . Unlike Mk and qk , M̃k and q̃k remain finite
when the average abundance diverges. In the limit of infinite
average abundance, the new fixed-point equations are equiva-
lent to Eqs. (A23) with the replacements Mk → M̃k, qk → q̃,
and �k → �̃k , where

�̃k = μk
∑

k′ pk′k′M̃k′/d2

σ
√

k
∑

k′ pk′k′q̃k′/d
. (C1)

Solving these new fixed-point equations, together with the
condition

∑
k q̃k = 1, gives the diverging abundance curves

in Fig. 1 in the main text.

2. Linear instability

To derive stability condition (7) from the main text, we
consider a linear perturbation to the effective dynamics in
Eq. (A19) near a fixed point. We follow along the lines of
the stability analyses in Refs. [32,52] (see also Ref. [44] for
a derivation involving block structured interactions, which
generalizes the present argument).

The local stability of possible fixed points can be probed
by addition of an infinitesimal independent and identically
distributed Gaussian perturbation εξk (t ) to each equation in
the effective dynamics in Eq. (A19). In the stable regime, we
expect the system to return to the fixed point when perturbed;
that is, we expect the response of the system to the perturba-
tion to decay to zero as t → ∞.

Adding the perturbation εξk (t ) to the effective dynamics
[Eq. (A19)], we have

ẋk (t ) = xk (t )

(
1 − xk (t ) + μk

d2

∑
k′

pk′k′Mk′ (t ) + γ σ 2k

d2

×
∑

k′
pk′k′

∫
dtGk′ (t, t ′)xk (t ′) + ηk (t ) + εξk (t )

)
,

(C2)

where Mk (t ), Gk (t ), and the noise term ηk (t ) are defined in
Eqs. (A20).

We quantify the linear response of xk (t ) and ηk (t ) to the
perturbation εξ (t ) about the fixed point by yk (t ) and ζk (t ),
respectively, so that

xk (t ) = x�
k + εyk (t ),

ηk (t ) = η�
k + εζk (t ). (C3)

From this, we can self-consistently relate the responses to
each other using Eqs. ((A20)

〈ζ a(t )ζ a(t ′)〉 = σ 2k

d2

∑
k′

pk′k′〈yk (t )yk (t ′)〉. (C4)

014318-13



POLEY, GALLA, AND BARON PHYSICAL REVIEW E 111, 014318 (2025)

Assuming time translation invariance of the fixed point in the
long-time limit, we obtain the following equation for the time
dependence of the perturbed abundances:

ẏk (t ) = x�
k

(
−yk (t ) + γ σ 2k

d2

∑
k′

pk′k′
∫ t

0
dt ′ Gk (t − t ′)yk (t ′)

+ ζk (t ) + ξk (t )

)
. (C5)

We now follow Refs. [32,52] by taking the Fourier trans-
form (denoted with a hat, which we note is not related to the
hatted variables in the generating functional calculations in
Appendix A)

iωŷk (ω) = x�
k

(
−ŷk (ω) + γ σ 2k

d2

∑
k′

pk′k′Ĝk (ω)ŷk (ω)

+ ζ̂k (ω) + ξ̂k (ω)

)
. (C6)

Squaring and averaging over the distribution of the perturbing
noise ξk ,⎧⎨⎩ |ω|2

(x�
k )2

+
∣∣∣∣∣1 − γ σ 2k

d2

∑
k′

pk′k′Ĝk (ω)

∣∣∣∣∣
2
⎫⎬⎭〈|ŷk (ω)|2〉ξ

= φk

{
σ 2k

d2

∑
k′

pk′k′〈|ŷk′ (ω)|2〉ξ + 1

}
, (C7)

where the factor of the survival rate φk is due to the fact that
Eq. (C5) only applies to nonzero fixed points. Fluctuations
around the zero point decay and hence do not contribute to
〈|ŷk (ω)|2〉. Noticing that Ĝk (0) = χa, we now set ω = 0 (see
Ref. [52]) and find{

1 − γ σ 2k

d2

∑
k′

pk′k′χk′

}2

Yk = φk

{
σ 2k

d2

∑
k′

pk′k′Yk′ + 1

}
,

(C8)

where Yk ≡ 〈|ŷk (0)|2〉. Assuming a stationary state in
which 〈yk (t )yk (t + τ )〉 depends on τ only, then Yk =∫

dτ 〈yk (t )yk (t + τ )〉. In the stable regime, yk (t ) → 0 as t →
0, and therefore Yk is finite. Hence, if Yk is not finite, then this
signals the onset of linear instability. Hence, the onset of linear
instability corresponds to the point at which the only solution
to Eq. (C8) for which Yk diverges for some degree k.

Equation (C8) is equivalent to the condition for linear
(in)stability given in the main text [Eq. (7)]. To make the
connection, we first use the fixed-point equations (A23) (the
one for χk) to rearrange Eq. (C8) into the following form:

Ỹk = σ 2kχ2
k

d2φk

∑
k′

pk′

[
k′ + 1∑

k′′ pk′′Yk′′

]
Ỹk′ , (C9)

where we have defined Ỹk = Yk/(
∑

k′ pk′Yk′ ), which remains
finite, even if Yk diverges for some k. At the point of linear
instability, the quantity 1//(

∑
k′ pk′Yk′ ) = 0, and Eq. (C9) is

an eigenvalue equation

Yk =
∑

k′
Skk′Yk′ , (C10)

where S is a matrix with kk′ element equal to Skk′ =
σ 2kχ2

k pk′k′/(d2φk ). All elements of the matrix S are posi-
tive, as are all elements of the vector Y (by definition of
Yk). Hence, Y is the Perron-Frobenius (PF) eigenvector of
S, with PF eigenvalue equal to 1. Furthermore, as S can be
written as the outer product of two vectors [S = abT, for
ak = σ 2kχ2

k /(d2φk ) and bk = pkk], its PF eigenvalue is given
by the inner product of these two vectors (aTb = ∑

k akbk).
That is, the linear instability occurs at the point when

σ 2

d2

∑
k

pk
k2χ2

k

φk
= 1. (C11)

To see that the LHS is smaller than 1 in the stable regime,
we repeat the same argument, but we write Y = ∑

k pkYk in
Eq. (C9) and do not assume that Y diverges. This time, the
eigenvalue condition is different; we have λPF[S + p/Y] = 1,
where we have defined the matrix p with elements pkk′ =
σ 2χ2

k pk′/(d2φk ). All elements of the matrix p are positive. It
is known that the PF eigenvalue of a matrix is an increasing
function of its elements [70,71]. Hence, we have λPF[S] �
λPF[S + p/Y] = 1 in the stable regime. That is, in the stable
regime, the LHS of Eq. (C11) is less than 1.

In Fig. 1 in the main text, we solve for the boundary of
the linearly stable region in parameter space by adding the
condition in Eq. (C11) to the fixed-point equations.

APPENDIX D: INTERACTION STATISTICS
IN THE SURVIVING COMMUNITY

To find the quantities defined in Eq. (10), we employ a
similar philosophy to that used in Ref. [37], except here we
use a cavity approach. In this case, the cavity approach helps
to elucidate the mechanism behind the trends seen in Fig. 6
by revealing the origins of all the contributing factors to the
quantities in Eq. (10).

1. The cavity approach

At the fixed point, we must have that

xi = max

⎛⎝0, 1 +
∑

j

Ai jαi jx j + hi

⎞⎠, (D1)

where hi is again an external field that we include for analyti-
cal purposes, and which we later set to zero.

Let us suppose that we introduce a new "cavity" species,
which we endow with index 0, to the network. We suppose
that the cavity species has degree k (in the original commu-
nity). Let us now inspect the following quantity:

μ
(k)
0 =

∑
j

A0 jα0 jθ j, (D2)

where θ j (x j ) = 0 if a species is extinct and θ j (x j ) = 1 if the
species survives. Following the usual procedure for cavity cal-
culations, we attempt to find θ j in terms of system parameters
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before the addition of the cavity species. We write

θ j = θ
(0)
j + δθ j, (D3)

so that δθ j (which takes values 0 or ±1) accounts for the
changes in the numbers of surviving species due to the intro-
duction of the cavity species. We expect the number of species
that go extinct due to the introduction of the new species to be
small.

Inserting this into Eq. (D2) and defining αi j = μ/d + ai j ,
we find

μ
(k)
0 = μ

d

∑
j

A0 jθ j +
∑

j

A0 ja0 jθ
(0)
j +

∑
j

A0 jα0 jδθ j . (D4)

Let us now use the fact that we have many species to write
each of these terms in terms of the statistics of the community.

2. Averaging Eq. (D4) over the wider pool of species

Let us now discuss the statistics of each of the terms in
Eq. (D4), keeping the cavity interactions A0 j , α0 j , and α j0

fixed. Specifically, we first take the mean with respect to the
interactions αi j and the network Ai j , where both i and j are
not equal to zero, and then discuss the variance with respect
to these same quantities. We denote the average with respect
to these variables as 〈·〉0 (as opposed to 〈·〉, which indicates
an average over all interaction coefficients, including those of
the cavity species).

We treat the average over the random variables A0 j , α0 j ,
Aj0, and α j0 separately so that we can better see how μ

(k)
0

relates to other random quantities of interest, for example, the
abundance x0. This will help us to understand the origin of the
behavior of μ

(0)
k as k is varied (shown in Fig. 6).

Taking, for example, the first term in Eq. (D4), we first
examine its mean, and then its fluctuations. We find that

μ

d

〈∑
j

A0 jθ j

〉
0

= μ

d

∑
j

A0 j
[〈
θ

(0)
j

〉
0 + 〈δθ j〉0

]
, (D5)

where we have used that the survival of species before the in-
troduction of the cavity is independent of A0 j . We can rewrite
the second of these terms using the fact that

〈δθ j〉0 = dφk j

dh
Aj0α j0x0, (D6)

where we write k j for the degree of species j, and we obtain

μ

d

〈∑
j

A0 jθ j

〉
0

= μ

d

∑
j

A0 j

[
φk j + dφk j

dh
α j0x0

]
. (D7)

We see that the second of these terms is a small O(1/N )
correction compared to the first, and hence we can ignore
it. We now average over both the interaction statistics of the
original community and the cavity species to obtain

μ

d

〈∑
j

A0 jθ j

〉
≈ μ

d

∑
k′

kk′

dN

∑
j∈Sk′

〈
θ

(0)
j

〉
0

= k

d2

∑
k′

k′ pk′φk′ ,

(D8)

where we write Sk′ for the set of species with degree k′, and
we have used that the degree distribution of the network can
be written pk = Nk/N when N → ∞, where Nk is the number

of species with degree k. We hence see that the mean of the
first term in Eq. (D4) is nonvanishing in the thermodynamic
limit.

Let us now examine the fluctuations of this same term
[the first in Eq. (D4)]. One can see immediately from the
approach in Appendix A that the generating functional for the
ensemble of all species factorizes in the limit N → ∞. This
means that the variance of (or correlations between) any order
parameters such as φk or Mk are subleading in 1/N in the
thermodynamic limit. So, keeping A0 j and α0 j fixed, we see
that fluctuations due to randomness in the wider community
without the cavity species can always be neglected. Let us now
examine the fluctuations of μd−1 ∑

j A0 jθ j due to fluctuations
in the interactions of the cavity species. Since the probability
that each link in the network is independent of the rest of the
links in the network, we have

Var

⎡⎣μ

d

∑
j

A0 jθ j

⎤⎦ ≈ μ2

d2

∑
j

[〈A0 j〉 − 〈A0 j〉2]φ2
k j
, (D9)

which is subleading in 1/d ∼ 1/N . So, we see that the first
term in Eq. (D4) can be approximated by its mean in Eq. (D8).

Let us now turn our attention to the third term in Eq. (D4).
We will see that, in contrast to the first term, this term has non-
vanishing fluctuations. We once again examine the ensemble
average of this term (keeping the interaction coefficients with
the cavity species fixed), noting again that the fluctuations of
the order parameters of the wider community can be ignored.
Using Eq. (D6), we find〈∑

j

A0 jα0 jdθ j

〉
0

=
∑

j

A0 jα0 j〈dθ j〉0

= x0

∑
j

A0 jα0 j
dφk j

dh
α j0, (D10)

where we have used the fact that A0 j = Aj0.
The expression obtained in Eq. (D10) differs depending

on the precise values of the interaction coefficients of the
cavity species [noting that x0 also depends on these quantities
through Eq. (D1)]. However, we can demonstrate that the sum
over j in Eq. (D10) is a self-averaging quantity that can be
replaced by its mean, meaning that all the relevant variation
in the third term in Eq. (D4) can be captured by x0, multiplied
by a constant factor.

That is, we have〈∑
j

A0 jα0 j
dφk j

dh
α j0

〉
= kγ σ 2

d2

∑
k′

k′ pk′
dφk′

dh
,

Var

⎡⎣∑
j

A0 jα0 j
dφk j

dh
α j0

⎤⎦ =
∑

j

[〈A0 j〉〈(α0 jα j0)2〉

− 〈A0 j〉2〈α0 jα j0〉2]

[
dφk j

dh

]2

.

(D11)

014318-15



POLEY, GALLA, AND BARON PHYSICAL REVIEW E 111, 014318 (2025)

We see once again that the fluctuations of this quantity vanish
in the thermodynamic limit. We can thus approximate the sum∑

j A0 jα0 j
dφk j

dh α j0 by its average. The third term in Eq. (D4)
is thus well approximated by

∑
j

A0 jα0 jδθ j ≈ x0
kγ σ 2

d2

∑
k′

k′ pk′
dφk′

dh
, (D12)

where we see that the randomness is all accounted for by
the variable x0. In a certain sense, we were "lucky" that we
could encapsulate the relevant fluctuations of the third term
in Eq. (D4) entirely in the random variable x0. The second
term in Eq. (D4) is more complicated. To understand why,
we compare with the cavity calculation that could have been

performed to obtain the results in Eqs. (3) and (4) (instead of
the generating functional approach of Appendix A).

3. Lemma: Relating the random variable
z in Eq. (3) to the interaction coefficients

The fixed points of Eq. (1) satisfy

xi

⎛⎝1 − xi +
∑

j

Ai jαi jx j + hi

⎞⎠ = 0. (D13)

Introducing a new species 0 as a "cavity," one finds

x j ≈ x(0)
j + dx j

dh j
A j0α j0x0. (D14)

One thus arrives at

x0

⎛⎝1 − x0 + μ

d

∑
j

A0 jx
(0)
j +

∑
j

A0 ja0 jx
(0)
j + x0

∑
j

A0 jα0 jα j0
dx j

dh j

⎞⎠ = 0, (D15)

and consequently

x0 = max

⎛⎝0,
1 + μ

d

∑
j A0 jx

(0)
j + ∑

j A0 ja0 jx
(0)
j + h j

1 − ∑
j A0 jα0 jα j0

dx j

dh j

⎞⎠. (D16)

Supposing that species 0 has original degree k, we can compare to Eq. (3), and we see that the term
∑

j A0 ja0 jx
(0)
j in the

expression above corresponds to a Gaussian random variable, i.e.,

∑
j

A0 ja0 jx
(0)
j = zσ

√
k

d

∑
k′

k′ pk′

d
qk′ , (D17)

where z is a zero-mean, unit-variance Gaussian random variable, as in Eq. (3). One notes that we can also deduce this from the
cavity approach simply by computing the mean and the variance of

∑
j A0 ja0 jx

(0)
j . The variance is given as follows:

Vx ≡
〈∑

j

A0 ja0 jx
(0)
j

∑
j′

A0 j′a0 j′x
(0)
j′

〉
=
〈∑

j j′
δ j j′

σ 2

d
A0 j

[
x(0)

j

]2

〉
≈ σ 2k

d2

∑
k′

k′ pk′qk′ . (D18)

The second term in Eq. (D4) (i.e.,
∑

j A0 ja0 jθ
(0)
j ) has a similar structure to the term

∑
j A0 ja0 jx

(0)
j . We see that it too must

be a Gaussian random variable, with some correlation with the random variable z that appears in Eq. (3) (given that it is also
dependent on the same random variables a0 j). If we can find the variance of

∑
j A0 ja0 jθ

(0)
j and its correlation with z, then we

will understand fully how to relate μ
(k)
0 to the fixed-point quantities in Eq. (4), given that we already have the approximations

for the first and third terms in Eq. (D4) in Eqs. (D8) and (D12), respectively.

4. Relating the fluctuating part of Eq. (D4) to the fluctuating part of Eq. (3)

Let us now compute the variance of the quantity
∑

j A0 ja0 jθ
0
j in Eq. (D4). We find

Vθ ≡
〈∑

j

A0 ja0 jθ
(0)
j

∑
j′

A0 j′a0 j′θ
(0)
j′

〉
=
〈∑

j j′
δ j j′

σ 2

d
A0 j

[
θ

(0)
j

]2

〉
= σ 2k

d2

∑
k′

k′ pk′φk′ . (D19)

We can thus think of the second term in Eq. (D4) as also being a zero-mean Gaussian random variable, so we write∑
j

A0 ja0 jθ
0
j ≡ y

√
Vθ , (D20)
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where y is a Gaussian random variable with unit variance. Let us now understand how y is related to z in Eq. (D17) by finding
the covariance,

Cxθ ≡
〈∑

j

A0 ja0 jθ
(0)
j

∑
j′

A0 j′a0 j′x
(0)
j′

〉
=
〈∑

j j′
δ j j′

σ 2

d
A0 jθ

(0)
j x0

j

〉
= σ 2k

d2

∑
k′

k′ pk′Mk′ . (D21)

We can thus write

y = Cxθ√
VxVθ

z + z′
√

1 − Cxθ√
VxVθ

, (D22)

where z′ is a zero-mean unit-variance Gaussian random variable that is independent of z. We are now in a position to write
Eq. (D4) entirely in terms of the statistics of the surviving community.

5. Incoming and outgoing statistics of nodes with given degree

Now, inserting Eqs. (D8), (D12), (D20), and (D22) into Eq. (D4), we obtain

μ
(k)
0 = μk

d2

∑
k′

k′ pk′φk′ + zk
σ
√

k

d

∑
k′ k′ pk′Mk′√∑

k′ k′ pk′qk′
+ Cz′z′ + xk (zk )

γ σ 2k

d2

∑
k′

k′ pk′
dφk′

dh
, (D23)

where we have now evaluated some terms explicitly to high-
light their dependence on k, and we simply write Cz′ for
the coefficient multiplying z′, since this will not affect the
quantities in which we are interested.

Let us now consider the following quantity,

ν
(k)
0 =

∑
j

A j0α j0θ j, (D24)

which instead tells us about the outgoing links of a node with
degree k. We can perform exactly the same manipulations as
we did for μ

(k)
0 to arrive at

ν
(k)
0 = μk

d2

∑
k′

k′ pk′φk′ + zk
γ σ

√
k

d

∑
k′ k′ pk′Mk′√∑

k′ k′ pk′qk′

+ C′
z′z′ + xk (zk )

σ 2k

d2

∑
k′

k′ pk′
dφk′

dh
. (D25)

We notice the symmetry between the expressions in
Eqs. (D23) and (D25). What was an effect of the neighbors
of a node on the node itself in Eq. (D23) becomes the effect
of the node on its neighbors in Eq. (D25). This is why we
see factors of γ multiplying complementary terms in the two
expressions.

Now, to obtain the ensemble average of the above expres-
sions, we simply average over realizations of the variable
zk , conditioning on the survival of the cavity species 0. This
means that we require xk (zk ) > 0, which in turn requires that

zk > −�k (h) ≡ −1 + μk
∑

k′ pk′k′Mk′/d2 + h

σ
√

k
∑

k′ pk′k′qk′/d
. (D26)

The probability of survival is given by

φk =
∫ ∞

−�k

dz
1√
2π

e−z2/2. (D27)

Hence, averaging over the variable zk in Eqs. (D23) and (D25),
we obtain

μ�in
k

d�
≡

〈
μ

(k)
0 θ0

〉
kr

= μ

d
+ σ 2

d

dφk

dh

∑
k′ k′ pk′Mk′∑
k′ k′ pk′φk′

+ γ σ 2

d
Mk

∑
k′ k′ pk′ dφk′

dh∑
k′ k′ pk′φk′

,

μ�out
k

d�
≡
〈
ν

(k)
0 θ0

〉
kr

= μ

d
+ γ σ 2

d

dφk

dh

∑
k′ k′ pk′Mk′∑
k′ k′ pk′φk′

+ σ 2

d
Mk

∑
k′ k′ pk′ dφk′

dh∑
k′ k′ pk′φk′

, (D28)

where here we have used the fact that∫ ∞

−�

dze−z2/2z = 1√
2π

e−�2/2 = dφk

dh

√
σ 2

k

d2

∑
k′

pk′k′qk′ ,

(D29)

and we recall the definitions of r from the main text:

r =
∑

k pkφkk∑
k pk

. (D30)

To express the incoming and outgoing interaction strengths in
Eqs. (D28) in terms of the degree in the surviving community
k∗ (rather than the degree in the initial community k), we use
the correspondence E[k∗ | k] = rk (see Sec. IV A for a discus-
sion and Appendix E for mathematical details), as well as the
fact that the expected degrees in the surviving community are
concentrated around their mean value. Hence, if we treat k as
a continuous variable, we can approximate k∗ = rk to leading
order in 1/d .

Practically, the curves in Fig. 6 are produced by plotting
μ�in

k /d� in Eqs. (D28) against k/r. This is equivalent to plot-
ting μ�in

k� /d� against k�.
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6. Interpretation of the trends in Fig. 6

Let us now consider how the cavity approach that we have
taken can help us to understand the trends in Fig. 6. This is
accomplished by interpreting physically each of the terms in
Eqs. (D23) and (D25), with the help of Eq. (D4).

Equation (D23) describes the sum of incoming interactions
to a node of original degree k as a random variable. The
first term in this expression is deterministic, and is simply
the mean interaction, weighted by the number of surviving
neighbors (which will depend on k). The second and third
terms encode the fluctuations in the weights of the neighbors’
interactions. However, we note that once we average over
the disorder (conditioning on survival of species 0), the term
proportional to z′ vanishes, and the Gaussian distribution of zk

is truncated. That is, only species with sufficiently favorable
interactions survive, and this biases the mean interaction of
surviving species towards higher values. Finally, the last term
encapsulates the fact the survival of the neighbors of a species
is dependent on the abundance of that species. In turn, the
survival of the neighboring species affects the statistics of the
incoming interactions (i.e., the abundance of a species affects
its own incoming interactions via its effect on its neighbors).
We note that this last effect depends on the correlation be-
tween the incoming and outgoing links.

In the case where γ = 0 [i.e., there is no correlation be-
tween the incoming interactions to a species and outgoing
effect of a species on its neighbors, as is the case in Fig. 6(b)],
the final term mentioned above does not contribute. Instead,
only the direct influence of a species’ neighbors is relevant.
Since we condition on the survival of the species with degree
k, the incoming interactions cannot be too negative. This is
encapsulated by the lower limit imposed on the truncated
Gaussian random variable zk in Eq. (D23). For small k, this
lower limit is effectively −∞, which is reflected in the sur-
vival of nearly all species with small degree (i.e., φk ≈ 1 for
small k; see Fig. 5). This means that the term involving zk

averages to nil when we integrate over all its possible values,
and we find that species with low degree have interactions
that are the same as the original community. However, as we
increase k, φk decreases, and the lower limit on the integration
of zk increases also. This means that a bias is introduced,
whereby only species with more favorable incoming interac-
tions survive. This explains the upwards trend in Fig. 6(b) for
the incoming interactions.

Likewise, we can interpret each of the terms in Eq. (D25)
as follows: The first is again simply the mean interaction,
weighted by the number of surviving neighbors. The second
and third terms now reflect that each outgoing interaction from
a node can fluctuate, but these outgoing interactions correlate
with the incoming interactions. For this reason, the outgoing
interactions can once again be related to the variable zk , and
thus the survival probability of the species with original de-
gree k. Since we condition on this survival, this biases the
outgoing interactions so that the incoming interactions are
favorable (note that the resulting effect on the outgoing inter-
actions then depends on the sign of γ ). Finally, the last term
again encapsulates the fact that whether or not the neighbors
of a species survive is dependent on the abundance of that
species. Since we only look at the outgoing interactions from

a species (with degree k) to species that survive, if the abun-
dance of the species with degree k is higher, its influence on
the survival of the surrounding species is greater. For greater
abundances, a greater number of species can be killed, and
the correction to the average outgoing interaction is greater.
Since Mk reduces with increasing k, we see that the effect
of this term is greatest for small k, and it reduces to nil for
large k. This explains the downwards trend in the outgoing
interactions in Fig. 6(b).

The case of γ = 0 in Fig. 6(b) is useful, because it
separates the dependence of the outgoing and incoming in-
teractions. We see that by varying γ , we simply obtain a
superposition of the aforementioned effects. For example,
when γ = 1, the outgoing and incoming interactions must be
the same. Hence, μout

k = μin
k and the corresponding curve in

Fig. 6(a) is seen to be a kind of "average" of the upwards
and the downwards trends. On the other hand, for γ = −1,
we see that the fluctuations in the incoming and outgoing
interactions are exactly the negative of each other, hence the
kind of mirror-image effect in Fig. 6(c).

APPENDIX E: STRUCTURE
OF THE SURVIVING NETWORK

1. Probability that species with degree k
and k′ interact in the surviving community

To find the statistics of the adjacency matrix in the surviv-
ing community, we follow a strategy employed in Ref. [37]
that was used to find the statistics of the surviving interaction
matrix α in the fully connected model. Consider the follow-
ing modification of the generating functional in Appendix A,
which includes an additional term proportional to the interac-
tion matrix in the surviving community:

Z[λ] =
∫

DxD x̂Z0[x, x̂,ψ = 0] exp

×
⎡⎣−i

∑
i j

∫
dtAi jαi j x̂i(t )x j (t )

+ i
∑

i j

Ai j

∫
dtλi j (t )θi(t )θ j (t )

⎤⎦. (E1)

The functional Z0[x, x̂,ψ = 0] is the remaining part of the
generating functional which appears in Eq. (A1); it is not
relevant to our arguments in this section. As in Appendix D,
θi(t ) = 1 if the corresponding abundance xi(t ) > 0, and is
zero otherwise. In other words, θi(t ) is equal to 1 only if
species i is alive at time t . The functions λi j (t ) are auxiliary
fields which we will set to zero at the end of this derivation.

Taking a functional derivative of Z with respect to λi j (t ),
then setting λi j (t ) = 0, yields

δZ[λ]

δλi j (t )
= iAi jθi(t )θ j (t ). (E2)

We are interested in the average interactions between species
with degree k and k′. Using Eq. (E2), we can relate this
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quantity to the generating functional via

1

N∗
k N∗

k′

∑
i∈S∗

k

∑
j∈S∗

k′

〈Ai jθ
∗
i θ∗

j 〉α,A

= −i lim
t→∞

1

N∗
k N∗

k′

∑
i∈S∗

k

∑
j∈S∗

k′

〈
δZ[λ]

δλi j (t )

〉∣∣∣∣
α,Aλ=0

. (E3)

Averging Z[λ] over A, and proceeding similarly to the average
calculated in Appendix A, we find

〈Z[λ]〉A,α

=
∫

DxD x̂Z0[x, x̂,ψ = 0] exp

⎡⎣1

2

∑
i j

ln

{
1 + kik j

dN

× (〈e−i
∫

dt(αx̂i (t )x j (t )+β x̂ j (t )xi (t ))〉(α,β )

× ei
∫

dt(λi j (t )+λ ji (t ))θi (t )θ j (t ) − 1)

}]
, (E4)

where, similarly to Appendix A, we have written αi j → α

and α ji → β because the joint distribution of (αi j, α ji ) does
not depend on the indices i, j. Differentiating Eq. (E4) with
respect to λi j (t ) and setting λi j (t ) = 0 gives

〈Ai jθi(t )θ j (t )〉A,α

=
〈 kik jθi (t )θ j (t )

dN

〈
e−i

∫
dt(αx̂i (t )x j (t )+β x̂ j (t )xi (t ))〉

(α,β )

1 + kik j

dN (
〈
e−i

∫
dt(αx̂i (t )x j (t )+β x̂ j (t )xi (t ))〉

(α,β ) − 1)

〉
A,α

.

(E5)

This expression simplifies greatly if the network is dense
(where the average degree d is large), as it is in our model.
From the statistics of the interactions αi j in Eq. (2), we know
that αi j = O(d−1/2) and 〈αi j〉α = O(d−1). Hence, to leading
order in 1/d , the statistics of the interactions do not directly
contribute to Eq. (E5) and we have

〈Ai jθi(t )θ j (t )〉A,α =
〈

kik j

dN
θi(t )θ j (t )

〉
A,α

+ O(d−1). (E6)

Averaging over species with common degree in the original
community now gives

1

N�
k N�

k′

∑
i∈S�

k

∑
j∈S�

k′

〈Ai jθ
�
i θ�

j 〉A,α

= 1

N�
k N�

k′

∑
i∈S�

k

∑
j∈S�

k′

〈
kik j

dN
θi(t )θ j (t )

〉
A,α

= kk′

dN
, (E7)

as claimed in the main text.
The same method can be used to compute any statistics of

the adjacency matrix in the surviving community. As we need
it in the following section, we also have

1

N�
k N�

k′N�
k′′

∑
i∈S∗

k

∑
j∈S∗

k′

∑
l∈S∗

k′′

〈Ai jAilθ
�
i θ�

j θ
�
l 〉A,α = k2k′k′′

d2N2
. (E8)

All higher moments of the adjacency matrix have similarly
simple forms.

2. Degree sequence in the surviving community

Here we detail the derivation of the degree sequence in the
surviving community. First, we will show that the expected
degree of a species in the surviving community, given its
degree in the original community, is given by Eq. (8) in the
main text. We will then show that the degrees concentrate
around their mean value.

To compute E[k∗
i | ki, i ∈ S∗], we write it in terms of the

adjacency matrix in the surviving community. This gives [us-
ing Eq. (E7)]

E[k∗
i | ki, i ∈ S∗] = E

⎡⎣∑
j∈S∗

A∗
i j | ki, i ∈ S∗

⎤⎦
=
∑

k′
N∗

k′

(
kik′

dN
+ O(d0)

)
= kir + O(d0), (E9)

where we recall that r = ∑
k pkkφk/

∑
k pkk is the average

neighbor survival rate in the community. The calculation of
the variance proceeds in the same way: it relies on the addi-
tional calculation in Eq. (E8). We have

E[(k∗
i )2 | ki, i ∈ S∗] − E[k∗

i | ki, i ∈ S∗]2

= E

⎡⎣∑
jl∈S∗

A∗
i jA

∗
il | ki, i ∈ S∗

⎤⎦ − E

⎡⎣∑
j∈S∗

A∗
i j | ki, i ∈ S∗

⎤⎦2

=
∑
kk′

N∗
k N∗

k′
(ki )2kk′

d2N2
− (kir)2 + O(d0)

= O(d0), (E10)

as claimed in the main text.

3. Degree distribution in the surviving community

To leading order in 1/d , the degrees of species in the
surviving community concentrate around the mean value in
Eq. (E9). Using this, we can find an expression for the de-
gree distribution which is accurate to leading order in 1/d
by simply approximating the degree sequence of a species
in the surviving community with k� = kr, where k is the
degree of the species in the original community. As kr is
not in general an integer, we will find an expression for the
function P�(k�/N ) = N p�

k� , which we assume is continuous
for large N . The degree distribution in the original community
can be written similarly as P(k/N ) = N pk . These expressions
are normalized and satisfy

1

N

∑
i

f (ki ) =
∑

k

pk f (k) ≈
∫ κmax

κmin

P(κ ) f (κ )dκ,

1

N�

∑
i∈S�

f (k�
i ) =

∑
k�

p�
k� f (k�) ≈

∫ κ�
max

κ�
min

P�(κ ) f (κ )dκ, (E11)

where κ = k/N and κ� = k�/N = rκ . The approximations in
Eq. (E11) hold for large N , which allows us to approximate
the sums as integrals.
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To find an expression for the degree distribution in the
surviving community, we observe that the second of the ex-
pressions in Eqs. (E11) can also be computed as follows
(using the approximation k� = kr):

1

N�

∑
i∈S�

f (k�
i ) = 1

N�

∑
k

N�
k f (kr)

= 1

φ

∑
k

pkφk f (kr)

= 1

φ

∫ κmax

κmin

dκP(κ )
(κ ) f (κr)

= 1

φr

∫ κ�
max

κ�
min

dκP
(κ

r

)


(κ

r

)
f (κ ), (E12)

where 
(k/N ) = φk . The two expressions for 1
N�

∑
i∈S� f (k�

i )
in Eqs. (E11) and (E12) must be equal. As the function f is
arbitrary, we conclude that the following equality holds:

P�(κ ) = 1

φr
P
(κ

r

)


(κ

r

)
, (E13)

which is Eq. (9) in the main text.

APPENDIX F: BARABÁSI-ALBERT NETWORKS

We further test our theory by applying it to a system for
which the initial pool of species interacts on a Barabási-Albert
network [72]. The use of a Chung-Lu network in our analysis
is equivalent to an annealed network approximation [31,43],
and thus applies to other networks. It is best suited to un-
correlated networks. In Barabási-Albert networks degrees are
not strictly uncorrelated [73]. However, these correlations are
known to be small (see, e.g., Ref. [74]), so the assumption of
uncorrelated degrees is valid as an approximation.

Barabási-Albert networks can be constructed through a
growth algorithm, adding a new node to an existing and using
the well-known preferential attachment protocol to connect
the new node to m existing nodes [72]. Asymptotically, this
leads to a degree distribution of the form [53]

pk = 2m(m + 1)

k(k + 1)(k + 2)
. (F1)

The network is therefore scale-free, p(k) ∼ k−3 for large k.
In Figs. 8 and 9, we test our theory against simulations of

communities for which the initial network is of the Barabási-
Albert form. The theory appears to do quite well, despite the
fact that it does not account for degree correlations.

APPENDIX G: SPECIFYING THE FINAL
DEGREE DISTRIBUTION

In Sec. IV A, we determine the degree distribution in the
surviving community, given the statistics of interactions and
the degree distribution in the initial community. In this ap-
pendix, we address the inverse problem; i.e., we determine
what initial communities give rise to surviving communities
with a given degree distribution. Throughout this section,
we write pk for the discrete degree distribution in the initial
community, and P(κ ) for a continuous function on [0, 1] such

FIG. 8. Initial (orange straight) and final (pink curved) degree
distributions in the case where the initial degree distribution is a
Barabási-Albert network with m = 400 and N = 10 000. Additional
parameters are μ = −3.0, σ = 1.0, γ = 0.0. Bars are the result of a
single realization of the initial network and the final network result-
ing from the dynamics, respectively. Lines are from the theory with
the Barabási-Albert degree distribution as input. The inset shows
the degrees of species in the surviving community as a function
of the degree in the original community. In the inset, only a subset of
the points are shown to avoid overcrowding; no average is taken. The
solid line in the inset is the line k = rk�, where r is defined in the
main text [see Eq. (8)].

that P(k/N ) = N pk . Similarly, we use p�
k� for the degree dis-

tribution in the surviving community and P�(k�/N ) = N p�
k� ,

as well as φk for the survival rate of species with degree k and

(k/N ) = φk . We also use κ = k/N and κ� = k�/N .

We now outline the method in the case where the final
degree distribution is scale-free, although it can be applied to
any desired final degree distribution. Specifically, for given
values of μ, σ , and γ , we find a degree distribution pk in the
initial community which produces a final degree distribution
which is scale-free with exponent α:

p�
k� ∝ (k�)−α. (G1)

We use the following anzatz for the degree distribution in
the original network,

pk = A
k−α

φk
, (G2)

FIG. 9. Data similar to that in Fig. 5 of the main text, but for
a Barabási-Albert network in the original community (m = 50, N =
2000). Parameters for the interaction strengths are μ = −3.0, σ = 1,
and values of γ are as indicated in (a). There is no curve for γ = 1
because the system is unstable for that choice of parameters.
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FIG. 10. Example of a degree distribution (orange bars on the
right) which results in a scale-free final degree distribution (pink
bars on the left). Statistics of the interactions are μ = −3.0, σ =
1.0, γ = 0.0, and the final degree distribution is a power law with
exponent 3. Bars are from a single run of the dynamics with N =
10 000 species in the initial community. To mitigate issues with
constructing networks with the required degree distributions, we
have imposed a minimum and a maximum degree for the degree
distribution in the initial community (see, e.g., Ref. [75]). The occur-
rence of more low-degree species in the final network than expected
from the theory is likely due to a combination of finite-size effects
and network sparsity, both of which our theory does not take into
account.

where A is a normalization constant ensuring
∑

k pk = 1.
As the survival rates φk depend on the degree distribution
pk in the initial community, they must be determined self-
consistently. If there are survival rates which satisfy this
self-consistent requirement, then application of Eq. (9) from
the main text reveals that the final degree distribution is scale-
free, as required:

P�(κ�) = A

φr



(

κ�

r

)(
κ�

r

)−α



(

κ�

r

)
∝ (κ�)−α, (G3)

or, in discrete form, p�
k� ∝ (k�)−α .

To determine the survival rates {φk}, we insert the
degree distribution pk from Eq. (G2) into the fixed-point
equations [see Eqs. (A23)]. This gives

χk = w0(�k )

[
1 − Aγ σ 2k

d2

∑
k′

(k′)−α

w0(�k′ )
k′χk′

]−1

,

Mk = w1(�k )�k,

qk = w2(�k )�2
k , (G4)

where

�k =
√

Aσ 2k

d2

∑
k′

(k′)−α

w0(�k′ )
k′qk′

×
[

1 − Aγ σ 2k

d2

∑
k′

(k′)−α

w0(�k′ )
k′χk′

]−1

,

�k =
[

1 + Aμk

d2

∑
k′

(k′)−α

w0(�k′ )
k′Mk′

]

×
[√

Aσ 2k

d2

∑
k′

(k′)−α

w0(�k′ )
k′qk′

]−1

, (G5)

and where we have used w0(�k ) = φk . The (initial) degree
distribution is unknown in these equations. We must add two
further constraints to ensure that pk is normalized and that d
is the average degree in the initial network:

A
∑

k

k−α

w0(�k )
k = d,

A
∑

k

k−α

w0(�k )
= 1. (G6)

Equations (G4), together with Eqs. (G6), define a system of at
most 3kmax + 2 equations in the unknowns Mk, qk, χk , d , and
A. Similarly to Appendix A 1, we can write the self-consistent
equations in a more convenient form by defining the following
parameters:

U = Aμ

d2

∑
k′

(k′)−α

w0(�k′ )
k′Mk′ ,

S2 = Aσ 2

d2

∑
k′

(k′)−α

w0(�k′ )
k′qk′ ,

T = Aγ σ 2

d2

∑
k′

(k′)−α

w0(�k′ )
k′χk′ . (G7)

In terms of these quantities, our self-consistent equations are

U = ASμ

d2

∑
k

k−αk
3
2

1 − T k

w1

(
1+Uk
S
√

k

)
w0

(
1+Uk
S
√

k

) ,

1 = Aσ 2

d2

∑
k

k−αk2

(1 − T k)2

w2

(
1+Uk
S
√

k

)
w0

(
1+Uk
S
√

k

) ,

T = Aγ σ 2

d2

∑
k

k−αk

(1 − T k)
,

d = A
∑

k

k−αk

w0

(
1+Uk
S
√

k

) ,

A =

⎛⎜⎝∑
k

k−α

w0

(
1+Uk
S
√

k

)
⎞⎟⎠

−1

. (G8)

To summarize: For given μ, σ, γ , and α, the following
steps will produce a surviving community whose network of
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interactions has a scale-free degree distribution with exponent
α. First, solve Eqs. (G8) for the unknowns A, d,U, S, and
T . Then, run the dynamics on a community with interaction
statistics μ, σ , γ and degree distribution

pk = A
k−α

w0

(
1+Uk
S
√

k

) . (G9)

The degree distribution in the resulting surviving community
will be scale-free with exponent α. Figure 10 demonstrates
that it is possible to solve Eqs. (G8) in the case where α = 3.
We emphasize that while we have shown the procedure in the
case of a scale-free network, this can be generalized to other
shapes of the desired degree distribution among surviving
species.
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