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Diverse communities behave like typical random ecosystems

Wenping Cui *

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02139, USA
and Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, USA

Robert Marsland, III† and Pankaj Mehta‡

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02139, USA

(Received 29 March 2021; revised 4 August 2021; accepted 8 September 2021; published 27 September 2021)

In 1972, Robert May triggered a worldwide research program studying ecological communities using random
matrix theory. Yet, it remains unclear if and when we can treat real communities as random ecosystems. Here,
we draw on recent progress in random matrix theory and statistical physics to extend May’s approach to
generalized consumer-resource models. We show that in diverse ecosystems adding even modest amounts of
noise to consumer preferences results in a transition to “typicality,” where macroscopic ecological properties
of communities are indistinguishable from those of random ecosystems, even when resource preferences have
prominent designed structures. We test these ideas using numerical simulations on a wide variety of ecological
models. Our work offers an explanation for the success of random consumer resource models in reproducing
experimentally observed ecological patterns in microbial communities and highlights the difficulty of scaling up
bottom-up approaches in synthetic ecology to diverse communities.
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I. INTRODUCTION

One of the most stunning aspects of the natural world
is the immense diversity of ecological communities, ranging
from rainforests to human microbiomes. Ecological com-
munities are critical for numerous processes ranging from
global water cycling processes [1] to animal development
and host health [2]. For this reason, understanding the prin-
ciples governing community assembly and function in diverse
communities has wide ranging applications from conservation
efforts to pharmaceutical engineering and bioremediation [3].

Many traditional ecological models focus on ecosystems
consisting of a few species and resources. In such low di-
mensional models, it is often possible to characterize the
ecological traits of all the species and resources and then use
this information to make predictions about community-level
properties [4–6]. However, many natural communities are ex-
tremely diverse and the models and parameters are naturally
high dimensional. This problem is especially pronounced in
the context of microbial ecology where hundreds of species
can coexist in a single location. In this case, a comprehensive
parametrization of species and resource traits is no longer
feasible, suggesting that new ideas and concepts are required
to understand diverse communities.

A similar problem is encountered in statistical physics.
For example, an ideal gas is characterized by the unit mole,
which has the order of 1023 particles, making it impossible
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to simultaneously specify the microscopic state of the system
(e.g., the positions and velocities of all particles). Despite
this uncertainty, it is still possible to make predictions about
macroscopic properties like pressure and the average energy
by treating the positions and velocities of particles as inde-
pendent random variables [7]. The fact that such universal
statistical behaviors emerge naturally in large disorder sys-
tems composed on many particles suggests that a similar
approach maybe possible in ecological systems.

In 1972, Robert May suggested that large complex ecosys-
tems can also be modeled as random systems [8]. May
considered a diverse ecosystem composed of S species whose
interspecific interactions were sampled randomly and inde-
pendently from a normal distribution with zero mean and
variance σ 2. In particular, May asked when such a diverse
random ecosystem would be stable to small perturbations.
To answer this question, he examined the largest, i.e., the
rightmost eigenvalue λmax of the S × S community interac-
tion matrix J, whose diagonal entries—chosen to be Jii = −1
by May—describe intraspecific competition and off-diagonal
entries Ji j describe how much the growth rate of species
i is affected by a small change in the population Nj of
other species j from its equilibrium value. Using a mathe-
matical formula for the distribution of eigenvalues of large
random matrices derived by Ginibre [9], May showed that
λmax increases with S, and derived a stability criterion gov-
erning the maximum diversity of an ecosystem: A diverse
ecosystem becomes unstable to small perturbations when√

Sσ > 1 [8]. May’s stability criteria has proven to be ro-
bust against a wide array of changes in the assumptions,
including adding biologically realistic correlation structures
to the matrix, or incorporating the dependence of the
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community matrix on population sizes in the Lotka-Volterra
model [10,11].

In May’s model, all ecosystem properties are encoded
in the species-species interaction matrix. A major limita-
tion of these models is that they neglect resource dynamics,
making it difficult to understand how ecosystem properties
depend on both the external environment and species con-
sumer preferences. For this reason, community assembly is
often analyzed using generalized consumer resource mod-
els (CRMs) [12,13]. In these models, species are modeled
as consumer that can consume resources, and sometimes
also produce resources [14–18]. Recently, we have shown
that such models, initialized with random parameters, can
predict laboratory experiments on complex microbial commu-
nities [14,16] and reproduce large-scale ecological patterns
observed in field surveys, including the Earth and Human
Microbiome Projects [16]. This suggests that the large-scale,
reproducible patterns we see across microbiomes are emer-
gent features of random ecosystems.

Yet, it remains unclear why random ecosystems can ac-
curately describe real ecological communities. To answer
these questions, in this paper we exploit ideas from random
matrix theory and statistical physics to analyze generalized
consumer-resource models in spirit of May’s original analysis.
We show that the macroscopic ecological properties of diverse
ecosystems can be described using random ecosystems, much
like thermodynamic quantities like pressure and average en-
ergy of the ideal gas can be described by considering particles
to be random and independent.

A. Models

To explore these ideas, we devised a more concrete version
of May’s original thought experiment describing an ecosystem
consisting of S noninteracting species where interactions are
gradually turned on. May’s original argument only considered
the local dynamics near a prespecified equilibrium point that
eventually becomes unstable. Since we are interested in ex-
ploring what happens in consumer resource models, we must
make additional modeling assumptions to arrive at a complete
set of nonlinear dynamics. We focus on numerous variants of
the consumer resource model (CRM) [12], including different
choices of resource dynamics, consumer preferences, as well
as more dramatic variants such as the microbial consumer
resource model introduced in Refs. [14–16].

The original MacArthur consumer resource model [12]
consists of S species or consumers with abundances Ni (i =
1...S) that can consume one of M substitutable resources with
abundances Rα (α = 1...M), whose dynamics are described
by the equations

dNi

dt
= Ni

( ∑
β

C̄iβRβ − mi

)
,

dRα

dt
= Rα

(
Kα − Rα −

∑
j

NjC̄ jα

)
. (1)

The consumption rate of species i for resource α is encoded by
the entry C̄iα in the S × M consumer preference matrix C̄, Kα

is the carrying capacity of resource α, and mi is a maintenance

energy that encodes the minimum amount of energy that a
species i must harvest from the environment to survive. When
the system is in the steady state, some species and resources
can vanish. We denote the numbers of surviving species and
resources by S∗ and M∗, respectively, and in general at steady
state we will have S∗ � S and M∗ � M. For this reason, we
refer to this model as the CRM with resource extinction and
consider its effects analytically and numerically in Sec. II C
and Appendix C 1.

In the beginning, we focus primarily on a popular variant of
the original CRM introduced by Tilman with slightly different
resource dynamics [13]:

dNi

dt
= Ni

( ∑
β

C̄iβRβ − mi

)
,

dRα

dt
= Kα− Rα−

∑
j

NjC̄ jα. (2)

From an ecological perspective, there are significant differ-
ences between this model variant and the original CRM. First,
the resource supply rate Kα is constant instead of following
logistic growth rate. Second, the species consume resources at
a rate that is independent of the resource concentrations in the
environment. This can lead to unphysical, negative resource
concentrations. Despite these differences, mathematically the
equilibrium solutions of the two models have similar forms.
One major difference that does arise is that in the dynamics
described by Eq. (2) consumers can no longer cause a re-
source to go extinct (i.e., M∗ = M). This makes this models
significantly easier to analyze (especially within the context
of random matrix theory) and leads to much simpler analytic
expressions. For this reason, we largely focus on this latter
model without resource extinction [see Figs. 12, 13, and 14 for
dynamics described by Eq. (2) and Appendix J for numerics
and Appendix C for analytics on original CRM described by
Eq. (1)]. Despite the unphysical, negative resource concentra-
tions, the CRM without resource extinction captures almost
all the qualitative behaviors present in more complicated and
physically realistic CRMs (though there are some subtle but
important differences discussed below).

Both the models in Eqs. (1) and (2) make very specific
assumptions about resource dynamics. To check the generality
of our results, we also numerically analyzed generalizations of
the CRM, including linear resource dynamics where resources
are supplied externally, and a model of microbial ecology with
trophic feedbacks where organisms can feed each other via
metabolic byproducts [14–16,19]. This analysis can be found
in Appendix A. Furthermore, for simplicity, in most of this
work we assume that S = M. However, we have numerically
checked that our results are robust to breaking on this assump-
tion (see Fig. 10).

In CRMs, the identity of each species is specified by
its consumption preferences. In real ecosystems, it is well
established that organisms can exhibit strong consumer pref-
erences for particular resources. However, recent work has
shown that consumer resource models with random consumer
preferences can reproduce experimental observations in field
surveys and laboratory experiments [14,16]. To understand
this phenomena, we asked how adding noise to consumer
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(b)(a) (c)

FIG. 1. Random interactions destabilize an ecosystem of specialist consumers. (a) Left: an ecosystem with system size M = 5 starts with
specialists consuming only one type of resource, resulting in a consumer preference matrix B = 1. Right: off-target consumption coefficients
C ∼ N ( μ

M , σc√
M

) are sampled from a Gaussian distribution, resulting in an overall consumer preference matrix C̄ = B + C. (b) Fraction of
surviving species S∗/M vs. σc, numerically computed using M = 100 for an ecosystem described by Eq. (2), along with the corresponding
results for a completely random ecosystem with B = 0. The error bar shows ±1 standard deviation from 10 000 independent realizations. Also
shown are examples of the matrices C̄ employed in the simulations. (c) Heatmap for the identity matrix plus a Gaussian random matrix with
σc = 1 for two system sizes: M = 100 and M = 500.

preferences changes macroscopic ecosystem level properties
like diversity and average productivity. To do so, we consid-
ered a thought experiment where we started with predesigned
consumer resource preference, and then added “noise” to the
consumer resource preferences. Mathematically, we can de-
compose the consumer matrix C̄ in Eqs. (1) and (2) into two
parts:

C̄ = B + C,

where B encodes predesigned structures, and C is a random
matrix representing “noise.”

For simplicity, we started with noninteracting species
where each species consumes its own resource. A set of non-
interacting species can be constructed by engineering each
species to consume a different resource type, with no over-
lap between consumption preferences. For example, one can
imagine designing strains of Escherichia coli, where each
strain expresses transporters only for a single carbon source
with all other transporters edited out of the genome: i.e., a
strain that can only transport lactose, another strain that can
only transport sucrose, etc. An ecosystem with such con-
sumer preference structure is shown in Fig. 1(a). In such an
experiment, horizontal gene transfer would eventually begin
distributing transporter genes from one strain to another, so
a realistic model would have to allow for some amount of
unintended, “off-target” resource consumption. In line with
May, we can model the consumer preferences C̄iα of species i
for resource α in such an ecosystem as the sum of the identity
matrix B = 1 and a random component Ciα with variance
σ 2 that encodes nonspecific preferences [see Fig. 1(a) right].
In other words, the full consumer matrix can be written as
C̄ = I + C.

II. RESULTS

A. Phase transition to random ecosystems

Figure 1(b) shows how the number of surviving species at
steady-state changes as one adds more and more nonspecific

resource preferences to an ecosystem initially composed of
noninteracting species. As in May’s analysis, the appropriate
measure of the importance of the random component is the
root-mean-squared off-target consumption σc =

√
Mσ 2 (re-

call M = S). This scaling reflects the fact that two consumer
matrices C̄ with the same σc but different system sizes M
can have very different amounts of absolute noise as shown
in Fig. 1(c), but exhibit almost identical community-level
properties (with all differences coming from finite-size ef-
fects; see Fig. 8 for the universal behavior at different M).
Figure 1(b) shows the fraction of surviving species S∗/M in
the ecosystem as a function of σc. At small values of σc, all
the species survive and S∗ = S. As high as σc = 0.7, almost
all of the original species are still present in the community.
But between σc = 0.7 and σc = 1, there is a sharp transition
in community structure, which results in about half of the
original species becoming extinct.

Remarkably, the fraction of surviving species converges to
the same value as for a completely random consumer prefer-
ence matrix and remains finite as σc → ∞ [20]. This means
that ecosystems with an arbitrarily large number of species
can be stably formed by considering a sufficiently large initial
species pool. We also examined two other community-level
properties: the mean species abundance 〈N〉 (i.e., the average
productivity) and the second moment of the population size
〈N2〉, which includes information about the distribution of
population sizes of various species. Figure 2 shows that both
of these quantities are also well-approximated by the random
consumer preference matrix for σc > 1. These numerical pre-
dictions are in excellent agreement with analytic predictions
derived in the S → ∞ limit derived in Appendix C using the
cavity method [21,22].

This convergence to random ecosystem behavior is quite
robust, and holds for other choices of designed consumer
preferences beyond the identity matrix considered above. Fig-
ure 2 shows numerical simulations of the diversity S∗/M,
average productivity 〈N〉, and second moment of the species
abundances 〈N2〉 as a function of the noise σc for two other
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(a) (b)

(c)

(d)

FIG. 2. Community properties for structured and random ecosys-
tems. (a) Examples of designed interactions Top: the identity matrix;
Middle: a Gaussian-type circulant matrix; Bottom: a block matrix
(see Appendix A for details). Simulations of designed and random
ecosystems where the random component of the the consumer pref-
erences C are sampled from a (b) Gaussian distribution N (0, σc√

M
),

(c) Uniform Distribution: U (0, b), or a (d) Binomial distribution:
Bernoulli(pc ). The plots show the fraction of surviving species
S∗/M, mean species abundance 〈N〉, and second moment of the
species abundances 〈N2〉 for designed and purely random ecosys-
tems (B = 0) the number of nonspecific consumer preferences is
increased.

choices of designed consumer preference matrices: a block
structure with predefined groups of species exhibiting strong
intra-group competition and a unimodal structure where each
species is more likely to consume resources similar to its pre-
ferred resource. Once again, we see that the ecosystem quickly
transitions to a behavior where these macroscopic proper-
ties are indistinguishable from those of a random ecosystem.
Borrowing terminology from physics, we call systems whose
macroscopic properties are well described by random ecosys-
tems as typical. The primary effect of the choice of consumer
preference matrix is to adjust the threshold value of σc

where the transition to typicality occurs. In all cases, we
find that the random behavior takes over when the average
total off-target consumption capacity over all M resource
types becomes greater than the consumption of the primary
resource in the original designed ecosystem in the absence of
noise.

The character of the self-organized state is also robust to
changes in the sampling scheme for the random component of
the consumer preferences. Gaussian noise in consumer prefer-
ences simplifies the analytic calculations but also sometimes
results in nonphysical negative values for consumer prefer-
ences. We therefore tested two sampling schemes that always
produce positive values for consumer preferences: uniformly
sampling the random component of preferences Ciα in an
interval from 0 to b, and binary sampling where Ciα = 1 with
probability pc and zero otherwise. Changing b or pc affects
both the mean and the variance of the random components of
the consumer preferences simultaneously making it difficult
to directly compare to the Gaussian case. Nonetheless, as

(a)

(b) (d)

(c)

FIG. 3. Effect of random interactions on ecosystem sensitivity.
(a) The bipartite interactions C̄iα in MacArthur’s consumer-resource
model can be mapped to pairwise competition coefficients Ai j in
generalized Lotka-Volterra equations through Ai j = ∑

α∈M C̄iαC̄T
α j .

(b) Spectra of Ai j at different σc for C̄ = 1 + C, where C is a
random matrix with i.i.d entries drawn from a normal distribution
with mean zero and standard deviation σc. The red solid line is the
Marchenko-Pastur distribution. (c) Comparison between numerical
simulations and analytic results for the minimum eigenvalue of A at
different σc. (d) Comparison between numerical simulations and an-
alytic solutions for the mean sensitivity ν of steady-state population
sizes to changes in species growth rates. See Appendix G for details.

can be seen in Fig. 2, the qualitative behaviors is identical
to the Gaussian case, with macroscopic ecological proper-
ties becoming indistinguishable from those of a fully random
ecosystem when the average off-target resource consumption
comparable to the the consumption of the designed resources.

B. Sensitivity to perturbations and the transition to typicality

To better understand why mass extinctions happen at σ ∗
c ∼

1 and allow for comparison with May’s original analysis, we
calculated an effective species-species competition matrix Ai j

between species for an ecosystem whose dynamics are gov-
erned by Eq. (2). We exploited the observation by MacArthur
and others that if resource abundances always remain close
to their steady state values, the steady-states of the CRM
coincide with those of an effective generalized Lotka-Volterra
model of the form

dNi

dt
= Ni

(∑
α∈M

CiαKα − mi −
∑

j

Ai jNj

)
, (3)

with the species-species interaction matrix given by

Ai j =
∑
α∈M

C̄iαC̄T
α j (4)

(see Fig. 3(a) and Appendix D for details). This matrix is
related to May’s community matrix governing stability J dis-
cussed in the introduction through the relation Ji j = −N̄iAi j ,
where N̄i is the steady-state abundance of species i. For sym-
metric interaction matrices of the form in Eq. (4), it is possible
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to prove that the largest eigenvalue λmax of J reaches zero from
below only when the smallest eigenvalue λmin of A reaches
zero from above (see Appendix E).

As shown in Fig. 1(b), the behavior broadly falls into one
of three different regimes depending on the amount of noise
introduced in the consumer preferences: a low-noise regime
when σc 
 1, a cross-over regime when 0 
 σc � 1, and
a high-noise regime when σc > 1. Figure 3(b) shows how
the eigenvalue spectrum of the corresponding Lotka-Volterra
interaction matrix A change as σc increases.

1. Low-noise regime (σc � 1)

In the low-noise regime, the engineered structure in
the consumer preference controls large scale ecological
properties. Furthermore, the eigenvalue spectrum of the LV-
interaction matrix A is centered around 1 reflecting the fact
there is very little competition between species (i.e., species
still occupy largely independent niches). For this reason, in
this regime all the initial species in the ecosystem survive to
steady-state so that S∗/M = 1.

2. Crossover regime (0 � σc � 1)

With increasing σc, the eigenvalues due the noise compo-
nent in A repel each other like in the Coulomb gas and the
spectrum spreads out [23]. λmin decreases until it reaches the
threshold of stability λmin

∼= 0 at σ ∗
c ≈ 1. Note that λmin is

close to 0 but not exactly at 0 because the steady-state of
the CRM is always stable [24]. In this regime even a small
environmental perturbations or small amounts of demographic
noise can result in species extinctions [25]. This is closely
related to the divergence of structural stability when λmin ∼
0 [26]. In Appendix C we show analytically using the Cavity
method [21,22] that in the limit M → ∞, λmin is approaches 0
from above when σ ∗

c = 1. At σc ∼ 1 the engineered structure
and noise have comparable amplitudes. For the case where
the consumer preferences are chose to be binary noise, this
threshold corresponds to a critical noise level pc ∼ 1

M , mean-
ing on average there is one random nonzero element in the
row besides the diagonal one. More generally, our numerics
suggest that the threshold to typicality occurs in a wide variety
of models when the expected off-target resource consumption
rates become comparable to the consumption rate for the
designed resources.

3. Noise-dominated regime (σc > 1)

In this regime, we observe two new phenomena that were
not accessible in May’s original framework. First, the spec-
trum of the species-species interaction matrix Ai j approaches
the Marchenko-Pastur law [27],

ρ(x) = 1

2πσ 2
c cx

√
(b − x)(x − a) + 	(c − 1)(1 − c−1)δ(x),

(5)
where a = σ 2

c (1 − √
c)2, b = σ 2

c (1 + √
c)2, c = S∗/M, and

	(x) represents the Heaviside step function. This differs from
May’s analysis where the spectrum of the interaction network
follows Girko’s Circular law [28–30]. The reason for this
difference is that species-species interaction matrix obtained
from the CRM is the outer product of a random matrix C̄

with itself [i.e., a Wishart matrix, see Eq. (4)], reflecting
the fact that the CRM has two different kinds of degrees of
freedom: resources and species. The Marchenko-Pastur law is
the distribution we would expect for an ecosystem with com-
pletely random consumer preferences [27]. This helps explain
our earlier observations that community-level observables of
ecosystems are indistinguishable from the purely random
ecosystems when σc is sufficiently large [see Fig. 3(b)].

Second, as σc increases past 1 and ecosystem properties
become typical, the resulting ecosystems once again become
insensitive to external perturbation [25]. To see this, we note
that we can measure sensitivity to perturbations by examin-
ing the minimum eigenvalue of the interaction matrix Ai j ,
with larger λmin meaning decreased sensitivity to pertura-
bations (see Appendix E). The minimum eigenvalue in the
Marchenko-Pastur distribution is located at

λmin = σ 2
c (1 −

√
S∗/M )2. (6)

As one increases σc, S∗/M → 1/2 from above since there is
increases competition between species for shared resources.
Consequently, λmin is always much larger than zero once
ecosystems crossover to their typical behavior.

The above analysis suggests that λmin is an important prop-
erty that can be used to characterize the three regimes seen in
Fig. 3(c). In the low-noise regime, species-species interactions
are weak and λmin ≈ 1, whereas in the high-noise regime
λmin = σ 2

c (1 − √
S∗/M )2. The calculation of λmin in Regime

B is challenging because of the mixture between the engi-
neered structure and noise. However, we can use techniques
from RMT for wireless communication (i.e., information-
plus-noise models) to analytically estimate λmin [31,32]. The
results are shown in the red scatter points in Fig. 3(d) (see
Appendix F 3). As discussed above, λmin approaches zero as
σc approaches one.

The spectrum of A also contains quantitative informa-
tion about the sensitivity of the ecosystem in the Cavity
method. Specifically, as shown in Appendix C, we can define
a susceptibility ν that measures the average response of the
steady-state population size N̄i to perturbing of the species
maintenance cost mi [see Eq. (2)]. We further show that ν is
directly related to the the sum of the inverse eigenvalues of Ai j

through the expression

ν = 1

M

∑
i

(1/λi ) = 1

M
tr(A−1). (7)

Figure 3(d) shows that this quantity is initially constant as σc

is increased from 0, then reaches the maximum value at σc =
1, and finally rapidly decreases to near zero. In Appendix C
we provide analytical calculations based on the cavity method
confirming these numerical results.

Note that our results are not restricted to Gaussian noise
but also apply to the other cases where the noise in consumer
preferences is binary or uniform (see Figs. 11 and 13). This
is because the central limit theorem guarantees that the statis-
tics of eigenvalues of large random matrices converge to the
statistics in Gaussian random matrices for many biologically
plausible choices of consumer preferences.
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(a) (b)

(c) (d)

FIG. 4. Effect of resource extinction on an ecosystem. A schematic for the consumer preference matrix with (a) and without (b) resource
extinction for specialist consumers that each eat independent resources. The left schematic corresponds to the initial consumer matrix, and the
right schematic to the consumer matrix after species and resource extinctions. Notice that resource extinctions can result in singular consumer
matrices. (c) Spectra of Ai j at σc = 0.3 with consumer matrices chosen as in Fig. 3 with (left) and without resource extinction (right). The
zero modes are marked with a red ellipse. (d) The mean sensitivity ν of steady-state at different σc. The dashed lines in panel (d) are cavity
solutions. The scatter points are results from numerical simulations. See Appendix C for detailed calculations.

C. Effect of resource extinction

Thus far we have focused on a CRM without resource
extinctions specified by Eqs. (2). As discussed extensively in
Appendix C, if we allow for resource extinction [Eqs. (1)] and
write

Ai j =
∑
α∈M∗

C̄iαC̄T
α j (8)

instead of Eq. (4), then, somewhat surprisingly, our cavity
method predicts a second-order phase transition to typical-
ity rather than a cross-over as is the case without resource
extinction. The signature of such a second-order transition is
the divergence of the susceptibility matrix ν discussed above.
Figure 4 shows ν with and without resource extinction, numer-
ically confirming the existence of this second order transition.
This second-order transition is also reflected in the spectrum
of the interaction matrix A through the the appearance of zero
eigenvalue modes for CRMs when resources can go extinct.

The existence of zero modes can be understood by noting
that resource extinction and species extinction correspond
to the column and row deletion in the consumption matrix
[shown in Fig. 4(a)]. Such deletions can change the engi-
neered component of the effective consumer preferences for
surviving species and resources, resulting in large fluctuations
in the interaction matrix A. In the presence of these large fluc-
tuations, the interaction matrix no longer self-averages, giving
rise to the observed second-order phase transition. This same
mechanism also leads to a second-order phase transition to
typical behavior when the engineered portion of the consumer
resources is block diagonal, even in the absence of resource
extinctions (see Fig. 14).

III. DISCUSSION

It is common practice in theoretical ecology to model
ecosystems using random matrices. Yet it remains unclear if

and when we can treat real communities as random ecosys-
tems. Here, we investigated this question by generalizing
May’s analysis to consumer resource models and asking when
the macroscopic, community-level properties can be accu-
rately predicted using random parameters. We found that
introducing even modest amount of stochasticity into con-
sumer preferences ensures that the macroscopic properties of
diverse ecosystems will be indistinguishable from those of a
completely random ecosystem. Our calculations and numer-
ics suggest that transition to typicality occurs when the total
amount of off-target resource consumption becomes compa-
rable to the consumption rate of targeted resources.

We confirmed our analytic calculations using numerical
simulations on CRMs with different types of resource dy-
namics and different classes of nonspecific interactions. We
emphasize that despite the fact that random ecosystems can
make accurate predictions about macroscopic properties like
the average diversity or productivity, they will in general
fail to capture species level details. This phenomena is well
understood in the context of statistical physics where it is
possible to predict thermodynamic quantities such as pressure
and temperature even though one cannot accurately predict
microstates.

These observations may help explain the surprising suc-
cess of consumer resource models with random parameters in
predicting the behavior of microbial ecosystems in the labora-
tory and natural environments [14,16]. They also suggest that
maybe possible to predict macroscopic ecosystem level prop-
erties like diversity or total biomass even when ecosystems are
poorly characterized or have lots of missing data.

The foregoing analysis has several other interesting im-
plications. First, it suggests that bottom-up engineering of
complex ecosystems may prove to be very difficult. As the
number of components increases, small uncertainties in each
of the interaction parameters may eventually overwhelm the
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designed interactions, and destabilize the intended steady
state. Instead, such system are much more likely end up in
a typical state which our theory suggests is much more stable
than the intended designed state as ecosystems become more
diverse.

Our work also suggests that in ecosystems well described
by consumer resource models, crossing a May-like transition
generically gives rise to typical random ecosystems rather
than a marginal stable phase as was found in a recent anal-
ysis of the Generalized Lotka-Volterra model [33–35] (an
important caveat to this statement is that adding nonresource
based interactions to consumer resource models can restore
complicated behavior reminiscent of the marginally stable
phase [25]). This suggests that even when cumulative pa-
rameter uncertainties preclude a detailed characterization of
an ecosystem, methods from statistical physics and Random
Matrix Theory can be employed to predict system-level prop-
erties [20,36]. It will be interesting to explore if and how these
insights can be exploited to design top-down control strategies
for ecosystems and identify assembly rules for microbial com-
munities with many species [4].

In this paper, we only consider white noise, which is inde-
pendently and identically added to all interaction components.
In the future, it will be interesting to ask how other specialized
noises, resulting from demographic stochasticity, phenotypic
variation, can affect our results. Based on our experience, we
expect that, even in these more complicated ecosystems, our
conclusion will hold quite generally in the thermodynamics
limit. But much more work needs to be done to confirm if this
intuition is really correct.
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APPENDIX A: MODEL SETUP

We primarily analyze CRMs of the form given by Eqs. (1)
and (2). To do so, we decompose the consumer matrix C̄ into
two parts:

C̄ = B + C, (A1)

with B encoding a predesigned set of resource-mediated
interactions, and C a random matrix encoding “off-target”
consumption. We consider three types of B (see Fig. 2):
the identity matrix, a square Gaussian-type circulant matrix
Biα = e−min(i,|M−i|)2/r2

with r = 7 [37], and a block matrix
with identical 10 × 10 blocks (all elements are 1 inside the
10 × 10 block). We also consider three types of random ma-
trices C. In all cases, each element in the matrix is sampled
independently from an underlying probability distribution.
The three distributions we consider are a normal distribution

with mean zero and standard deviation σc/
√

M, a uniform
distribution where each element is sampled uniformly from
[0, b], and a Bernoulli distribution where each element can
be +1 with probability pc and 0 with probability 1 − pc (i.e.,
Binary Noise).

For all simulations, unless otherwise specified, the default
choices for parameters are: M = 100, μ = 0, K = 1, σK =
0.1, m = 0.1, and σm = 0.01, and each data point is averaged
from 5000 independent realizations. The simulation detail for
each figure can be found at Appendix G. All simulations are
available on GitHub [38].

1. Alternative models used in the Appendix

To test the generality of our results, we also simulated
more complicated variants of the consumer resource model
(see Fig. 9 and Appendix I). First, we simulated a consumer
resource model with linear resource dynamics [39]:

dNi

dt
= Ni

(∑
β

C̄iβRβ − mi

)
,

dRα

dt
= κα − Rα −

∑
j

NjC̄ jαRα. (A2)

In this model resources are supplied externally at a rate rather
than described by a logistic growth. This small change in
resource dynamics can significantly change the ecosystem
properties because it prevents resources from going extinct
in the steady state. In the simulations, we set M = 100, μ =
1, κ = 1, σκ = 0.1, m = 0.1, and σm = 0.01, and each data
point is averaged from 1000 independent realizations.

Second, we simulated a generalization of the MacArthur’s
Consumer Resource model to a model we call the microbial
consumer resource model (MicroCRM). The MicroCRM was
introduced in Ref. [14] and refined in Ref. [19] to simulate
microbial communities. In this model, in addition to con-
suming resources species can produce new resources through
cross-feeding. This dramatically changes the resource dynam-
ics through the introduction of trophic feedbacks. Unlike the
original CRM and the CRM with linear resource dynamics,
the MicroCRM possesses no Lyapunov function. Full details
of the model are available in the appendices of Refs. [15,19].
In particular, the dynamics we use are described in Eq. (17)
of Ref. [19] with the leakage rate l = 0.4. The fraction of
secretion flux secreted to the same resource type is fs = 0.45,
the fraction of secretion flux to “waste” resource is fw =
0.45 and variability in secretion fluxes among resources is
d0 = 0.2. We set M = 100, μ = 1, K = 1, σK = 0.1, m = 0.1
and σm = 0.01 and each data point is averaged from 1000
independent realizations.

APPENDIX B: SENSITIVITY TO PARAMETER
PERTURBATIONS

We begin by defining four susceptibility matrices that mea-
sure how the steady-state resource and species abundances
respond to changes in the resource supply and species death
(growth) rates:

χR
αβ = ∂R̄α

∂Kβ

, χN
iα = ∂N̄i

∂Kα

, νR
αi = ∂R̄α

∂mi
, νN

i j = ∂N̄i

∂mj
, (B1)

034416-7



CUI, MARSLAND III, AND MEHTA PHYSICAL REVIEW E 104, 034416 (2021)

where the bar X̄ over the variable X denotes the steady-state
(equilibrium) solution.

For the extinct species and resources, by definition the
susceptibilities are zero. For this reason, we focus only on the
surviving resources and species. At steady-state, Eq. (1) gives

0 =
∑
α∈M∗

C̄iαR̄α − mi, (B2)

0 = Kα − R̄α −
∑
j∈S∗

N̄jC̄ jα, (B3)

where M∗ and S∗ denote the sets of resources and species,
respectively, that survive in the ecosystem at steady state.
Differentiating these equations yields the relations

0 =
∑
α∈M∗

C̄iα
∂R̄α

∂Kβ

, δαβ = ∂R̄α

∂Kβ

+
∑
j∈S∗

∂N̄j

∂Kβ

C̄jα,

δi j =
∑
α∈M∗

C̄iα
∂R̄α

∂mj
, 0 = ∂R̄α

∂mi
+

∑
j∈S∗

∂N̄j

∂mi
C̄jα. (B4)

Substituting in for the partial derivatives using the susceptibil-
ity matrices defined above, we have

0 =
∑
α∈M∗

C̄iαχR
αβ, δαβ = χR

αβ +
∑
j∈S∗

χN
jβC̄jα,

δi j =
∑
α∈M∗

C̄iανR
α j, 0 = νR

αi +
∑
j∈S∗

νN
jiC̄ jα. (B5)

These two equations can be written as single matrix equation
for block matrices:(

C̄ 0
1 C̄T

)(
νR χR

νN χN

)
= 1. (B6)

To solve this equation, we define a S∗ × S∗ matrix: Ai j =∑
α∈M∗ C̄iαC̄T

α j . A straightforward calculation yields

χR
αβ = δαβ −

∑
i∈S∗

∑
j∈S∗

C̄T
αiA

−1
i j C̄ jβ, (B7)

χN
iα =

∑
j∈S∗

A−1
i j C̄ jβ, νR

αi =
∑
j∈S∗

C̄T
α jA

−1
ji , (B8)

νN
i j = −A−1

i j , i, j ∈ S∗ and α, β ∈ M∗. (B9)

APPENDIX C: CAVITY SOLUTION

When the designed component of the consumer prefer-
ences is the identity [i.e., B = 1 in Eq. (A1)], the effect of
random off-target consumption on system-scale properties can
be computed analytically in the M, S → ∞ limit using the
cavity method [21,22]. The cavity calculation is straightfor-
ward but tedious. For this reason, it is helpful to introduce the
notation:

(i) M∗
M = φR, 〈R〉 = 1

M

∑
β Rβ , and qR = 1

M

∑
β R2

β =
〈R2〉, where M∗ is the number of surviving resources.

(ii) S∗
S = φN , 〈N〉 = 1

S

∑
j Nj , and qN = 1

S

∑
j N2

j = 〈N2〉,
where S∗ is the number of surviving species.

(iii) Ciα ≡ μ

M + σcdiα assuming 〈diα〉 = 0, 〈diαd jβ〉 =
δi jδαβ

M , with 〈ciα〉 = μ

M , 〈ciαc jβ〉 = σ 2
c

M δi jδαβ + μ2

M2 ≈ σ 2
c

M δi jδαβ .
(iv) Kα = K + δKα , with 〈Kα〉 = 1

M

∑
β Kβ = K ,

〈δKαδKβ〉 = δαβσ 2
K .

(v) mi = m + δmi, with 〈mi〉 = m, 〈δmiδmj〉 = δi jσ
2
m.

(vi) γ = M
S , and for the identity matrix γ = 1.

Following similar steps as in Ref. [22], we perturb the
ecosystem with a new species and resource N0 and R0. Ig-
noring O(1/M ) terms yields the following equations:

dNi

dt
= Ni

[
Ri − m +

∑
β

( μ

M
+ σcdiβ

)
Rβ

+
( μ

M
+ σcdi0

)
R0 − δmi

]
, (C1)

dRα

dt
= Rα

[
K + δKα − Rα − Nα −

∑
j

( μ

M
+ σcd jα

)
Nj

−
( μ

M
+ σcd0α

)
N0

]
, (C2)

dN0

dt
= N0

[
R0 − m +

∑
β

( μ

M
+ σcd jα

)
Rβ − δm0

]
, (C3)

dR0

dt
= R0

[
K + δK0 − R0 − N0 −

∑
j

(μ

S
+ σcd j0

)
Nj

]
.

(C4)

Denote by N̄α/0, R̄α/0, and N̄i, R̄α the equilibrium values
of the species and resources before and after adding the new-
comers, respectively. These can be related to each other using
the susceptibilities defined above:

N̄i = N̄i/0 − σc

∑
j

νN
i j d j0R0 − σc

∑
β

χN
iβd0βN0, (C5)

R̄α = R̄α/0 − σc

∑
i

νR
αidi0R0 − σc

∑
β

χR
αβd0βN0. (C6)

In what follows we assume replica symmetry. In this case,
the sums in the equations above can be approximated as
Gaussian random variables. For this reason, it is helpful to
introduce new auxiliary random variables:

zN =
∑

β

σcR̄β/0d0β − δm0, (C7)

zR =
∑

j

σcN̄ j/0d j0 − δK0, (C8)

where 〈zN 〉 = 0, σzN = √
σ 2

c qR + σ 2
m and 〈zR〉 = 0, σzR =√

σ 2
c qN + σ 2

K .
Case 1: Both R0 and N0 are positive. Following calcula-

tions analogous to Ref. [22] and noting that γ = M
S = 1 yields

R̄0 = max

[
0,

σ 2
c χ (K − μ〈N〉 + zR) − μ〈R〉 + m − zN(

1 − σ 2
c ν

)
σ 2

c χ + 1

]
,

(C9)

N̄0 = max

[
0,

(
1− σ 2

c ν
)
(μ〈R〉 − m+ zN )+ K− μ〈N〉 + zR(

1 − σ 2
c ν

)
σ 2

c χ + 1

]
.

(C10)
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Case 2: Either R0 or N0 is zero. We get exactly the same expression as the random ecosystem we derived in Ref. [22],

R̄0 = 0, N̄0 = μ〈R〉 − m + zN

σ 2
c χ

or N̄0 = 0, R̄0 = K − μ〈N〉 + zR

1 − σ 2
c ν

. (C11)

Case 3: Both R0 and N0 are zero, namely,

R̄0 = 0 and N̄0 = 0. (C12)

Combining the cases above, the steady-state solution is a Gaussian mixture depending on the positivity of R0 and N0.

R̄0 = 	(R0)

{
	(N0)

σ 2
c χ (K − μ〈N〉 + zR) − μ〈R〉 + m − zN(

1 − σ 2
c ν

)
σ 2

c χ + 1
+ [1 − 	(N0)]

K − μ〈N〉 + zR

1 − σ 2
c ν

}
, (C13)

N̄0 = 	(N0)

{
	(R0)

(
1 − σ 2

c ν
)
(μ〈R〉 − m + zN ) + K − μ〈N〉 + zR(

1 − σ 2
c ν

)
σ 2

c χ + 1
+ [1 − 	(R0)]

μ〈R〉 − m + zN

σ 2
c χ

}
. (C14)

Cavity equations for the susceptibilities can be obtained directly by differentiating these equations:

ν = 1

M

∑
i

νN
ii =

〈
∂N̄0

∂m

〉
= − φNφR

(
1 − σ 2

c ν
)

(
1 − σ 2

c ν
)
σ 2

c χ + 1
− φN (1 − φR)

σ 2
c χ

, (C15)

χ = 1

M

∑
α

χR
αα =

〈
∂R̄0

∂K

〉
= φNφRσ 2

c χ(
1 − σ 2

c ν
)
σ 2

c χ + 1
+ (1 − φN )φR

1 − σ 2
c ν

. (C16)

1. With resource extinction

Two solutions are found by solving Eqs. (C15) and (C16):

φR − φN = 0, χ = 0, ν = 1

σ 2
c − 1

, (C17)

φR − φN > 0, χ = φR − φN , ν =
1 − 2φNσ 2

c + φRσ 2
c −

√
1 + 2(1 − 2φN )φRσ 2

c + φ2
Rσ 4

c

2σ 4
c (φR − φN )

. (C18)

2. Without resource extinction

In this case, the resource never vanishes so that we can fix φR = 1 and solve Eqs. (C15) and (C16). Two solutions are found:

1 − φN = 0, χ = 0, ν = 1

σ 2
c − 1

, (C19)

1 − φN > 0, χ = 1 − φN , ν = 1 − 2φNσ 2
c + σ 2

c − √
1 + 2σ 2

c − 4φNσ 2
c + σ 4

c

2σ 4
c (−1 + φN )

. (C20)

The two solutions above are continuous at the transition point: χ = 0, i.e., φN = 1. Assume there is a small perturbation near
the transition: φN = 1 − ε and ε 
 1 and ν in Eq. (C20) can be expanded around ε. It is easy to check the ν in Eq. (C20) has
the same expression as Eq. (C19) at the first order of ε. Therefore, only one solution exists:

χ = 1 − φN , ν = 1 − 2φNσ 2
c + σ 2

c − √
1 + 2σ 2

c − 4φNσ 2
c + σ 4

c

2σ 4
c (−1 + φN )

. (C21)

The comparison between cavity solutions and numerical simulations for χ and ν are given in Figs. 12 and 4, respectively.

3. Without resource extinction and species extinction

In this case, both the resource and the species never vanish
so that we can fix φR = 1 and φN = 1. Solving Eqs. (C15)
and (C16), only one solution is found:

χ = 0, ν = 1

σ 2
c − 1

. (C22)

4. Behavior in three regimes

To understand these solutions and behaviors better, it
is helpful to consider three regimes: Regime A where

χ = φR − φN = 0, Regime B where χ becomes nonzero and
species start to extinct, and Regime C where σc 
 1 and it
becomes a random ecosystem.

In Regime B, resource extinction has a significant effect
on the system’s feasibility, shown in Fig. 4. With resource
extinction, Eq. (C18) shows there is a sudden change for the
linear response function ν from Regime A: χ = 0 to Regime
B χ �= 0. As ν ∼ 1

φR−φN
, even a slightly decrease of the num-

ber of surviving species will induce a huge perturbation to
the ecosystem, corresponding to a phase transition between
Regime A and Regime B at σ ∗

c ∼ 0.2.
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Without resource extinction, Eq. (C21) shows the linear
response function ν is continuous from Regime A to Regime
B. There is a crossover instead of a phase transition there. The
peak for the crossover is a finite value and can be calculated
by taking the derivative of Eq. (C21) over σc, ignoring the
correlation between σc and φN . It happens approximately at
σ ∗

c = √
4φN − 2 ∼ 1.04, where φN = 0.77 can be obtained

from numerical simulation. The explanation for the difference
from random matrix theory are provided in the main text and
also the spectrums in Figs. 3 and 4.

Without resource and species extinction, as shown in
Eq. (C22), ν diverges at σ ∗

c = 1, corresponding to λmin reach-
ing exactly zero. This result is also consistent with Eq. (F9),
predicted by random matrix theory, which ignores the effect
of row or column deletions in the interaction matrix. This tells
there do not exists any feasible solutions for the coexistence of
M species and M resources. Therefore, species must go extinct
before σ ∗

c = 1.
In Regime C, further increasing of σc after σc > 1, the σ 4

c
term in the square root becomes dominating and the the sus-
ceptibility ν behaves like a random ecosystem quickly, which
explains the dramatic drop of the species packing shown in
Fig. 1. It indicates the ecosystem tends to a self-organized
random state.

5. Solutions in Regimes A and C

In Regime A (σc 
 1), for Eqs. (1) with resource extinc-
tion, the solutions for the steady states become

R0 = max[0, m − zN ], N0 = max[0, K + zR]. (C23)

For Eqs. (2) without resource extinction, the solutions for the
steady states become

R0 = m − zN , N0 = max[0, K + zR]. (C24)

For ecosystems without resource and species extinction, the
solutions for the steady states become

R0 = m − zN , N0 = K + zR. (C25)

For Regime C (σc 
 1), for Eqs. (1) with resource extinc-
tion, the solutions for the steady states become

R0 = max

[
0,

K − μ〈N〉 + zR

1 − σ 2
c ν

]
,

N0 = max

[
0,

μ〈R〉 − m + zN

σ 2
c χ

]
, (C26)

in agreement with the equations obtained in Ref. [22] for
purely random interactions. For Eqs. (2) without resource
extinction, the solutions for the steady states become

R0 = K − μ〈N〉 + zR

1 − σ 2
c ν

, N0 = max

[
0,

μ〈R〉 − m + zN

σ 2
c χ

]
.

(C27)

For ecosystems without resource and species extinction, the
solutions for the steady states become

R0 = K − μ〈N〉 + zR

1 − σ 2
c ν

, N0 = μ〈R〉 − m + zN

σ 2
c χ

. (C28)

APPENDIX D: LOTKA-VOLTERRA MODEL, WISHART
MATRIX, AND MARCHENKO-PASTUR LAW

In this section, we show how the generalized Lotka-
Volterra model can be related to the CRM, and in particular,
the how the steady states of the two models can be made to
coincide. Solving for the steady-state values of the nonextinct
resources by setting the bottom equation in Eqs. (1) equal to
zero gives

R̄α = Kα −
∑

i

NiC̄iα.

Substituting this into the top equation in Eqs. (1) gives

dNi

dt
= Ni

( ∑
α∈M∗

CiαKα − mi −
∑

j

Ai jNj

)
,

where we have defined an interaction matrix Ai j =∑
α∈M∗ C̄iαC̄T

α j and M∗ is the set of surviving resources. We
can use this equation to solve for the steady-state (equi-
librium) abundances of nonextinct species and arrive at the
expression

N̄i =
∑
j∈S∗

A−1
i j

( ∑
α∈M∗

CjαKα − mj

)
,

where S∗ is the set of surviving species. In terms of N̄i, the
Lotka-Volterra equations become

dNi

dt
= −N̄i

∑
j

Ai j (Nj − N̄j ), (D1)

with community matrix

Ji j =
(

∂

∂Nj

dNi

dt

)
{N̄ j}

= −N̄iAi j . (D2)

In May’s work, Ji j is assumed to be an i.i.d. random matrix
and an extension of Wigner’s arguments about Gaussian ran-
dom matrices is used to compute the leading eigenvalue [8].
Since the N̄i are not known a priori, the stability of Lotka-
Volterra type dynamics are more easily studied in terms of the
eigenvalues of Ai j , using the connection between the leading
eigenvalues of J and A derived below.

APPENDIX E: RELATING THE EIGENVALUES
OF A AND J

In this section, we prove that the largest eigenvalue λmax

of the community matrix J (which controls the Lyapunov
stability of the fixed point) is negative if and only if the
smallest eigenvalue λmin of the Lotka-Volterra competition
matrix A is positive. For this stability analysis, we remove
the rows and columns corresponding to species that go extinct
in the steady state, since allowing Ni = 0 trivially generates
zero eigenvalues. J and A will always refer to the resulting
matrices of dimension S∗ × S∗.

We start by defining the diagonal matrix N̄, whose nonzero
elements are the equilibrium population sizes N̄i. This lets us
write

J = −N̄1/2(N̄1/2AN̄1/2)N̄−1/2, (E1)
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where N̄1/2 is the diagonal matrix whose entries are the square
roots of the population sizes. This equation says that J is
similar to −W ≡ −N̄1/2AN̄1/2, which implies that they share
the same eigenvalues.

Since W and A are both symmetric matrices, their eigen-
values are all real, and the positivity of all the eigenvalues is
equivalent to the positive-definiteness of the matrix.

Now we note that W is positive definite if and only if
A is positive definite. For if A is positive definite, then
xT Ax > 0 for all column vectors x �= 0, including the col-
umn vector x = N̄1/2y for any column vector y �= 0. But this
implies that yT N̄1/2AN̄1/2y > 0 for all y �= 0, i.e., that W is
positive definite. Conversely, if W is positive definite, then
yT N̄1/2AN̄1/2y > 0 for all y �= 0, including y = N̄−1/2x for
any x �= 0. But this implies that xT Ax > 0 for all x �= 0, i.e.,
that A is positive definite.

We conclude that the eigenvalues of W are all positive if
and only if the eigenvalues of A are all positive. Therefore
the largest eigenvalue of J = −N̄1/2WN̄−1/2 is negative if and
only if the smallest eigenvalue of A is positive, as claimed in
the main text.

An alternative but much simpler proof can be provided
with the properties of the D-stable matrix [40]. A real square
matrix A is said to be D-stable if the matrix DA is posi-
tive definite for every choice of a positive diagnoal matrix
D. A sufficient condition for D-stablility is that A + AT is
positive definite. The Lotka-Volterra competition matrix A is
symmetric and positive definite, i.e., D-stable. N̄ is all pos-
itive. It is obvious that J = N̄A is positive definite. Further
discussions about its application in ecology can be found in
Refs. [20,41]

APPENDIX F: CORRESPONDENCE BETWEEN RMT AND
CAVITY SOLUTION

Our numerical simulations show that after the transition,
our ecosystems are well described by purely random inter-
actions. This suggests that we should be able to derive our
cavity results using random matrix theory (RMT). We now
show that this is indeed the case. Our starting point are the
average susceptibilities which are defined as

χ = 1

M

∑
α∈M

χR
αα = 1

M

∑
α∈M∗

χR
αα, (F1)

ν = 1

S

∑
i∈S

νN
ii = 1

S

∑
i∈S∗

νN
ii . (F2)

From the cavity calculations, we only care about χR
αβ and νN

i j ,
because the other susceptibilities are lower order in 1/M.

We can combine these equations with Eqs. (I10) and (B9)
to obtain

χ = 1

M

∑
α∈M∗

χR
αα = 1

M
Tr

(
χR

αβ

)
(F3)

= 1

M
Tr(δαβ ) − 1

M
Tr

(∑
i∈S∗

∑
j∈S∗

C̄T
αiA

−1
i j C̄ jβ

)

= M∗

M
− 1

M
Tr

(∑
i∈S∗

∑
j∈S∗

A−1
i j C̄ jβC̄T

βh

)

= M∗

M
− S∗

M
= φR − γ −1φN . (F4)

We now show that the cavity solutions are consistent with
results from RMT using Eqs. (I10) and (B9) in Regime A and
Regime C described in the main text.

1. Regime A: C̄ = 1

This regime happens when σc 
 1. Substituting, C̄ = 1

into Eqs. (I10) and (B9) yields

χ = 0, ν = −1. (F5)

This is consistent with the cavity solution Eq. (C17) with σc =
0 since in this case S∗ = S = M.

2. Regime C: C̄iαi.i.d.N (0, σc/
√

M)

In this regime, σc 
 1. In this case, Ai j = ∑
α∈S∗ C̄iαC̄T

α j
takes the form of a Wishart matrix. We will exploit this to
calculate χ and ν. Notice,

ν = 1

S

∑
i∈S∗

νN
ii = −1

S
Tr

(
A−1

i j

) = −1

S

S∗∑
i=1

λ−1
i , (F6)

where λi is the eigenvalue of Ai j . From the Marchenko-Pastur
law [27], we know that the eigenvalues of a random Wishart
matrix obey the Marchenko-Pastur distribution. Substituting
Eq. (6) into the expression for ν and replacing the sum with
an integral yields

ν = −S∗

S

∫ b

a

1

x
ρ(x)dx

= −S∗

S

a + b − 2
√

ab

4σ 2
c y

√
ab

= − 1

σ 2
c

φN

φR − γ −1φN
. (F7)

The second line of Eq. (F7) is obtained by transferring the
integral function to a complex analytic function and applying
the residue theorem. This result is the same as the cavity
solution Eq. (C18) when σc 
 1.

3. Regime B using the Stieltjes transformation

In Regime B, it hard to estimate the minimum eigenvalue.
We can use Stieltjes transformation of information-plus-
noise-type matrices which are well studied in wireless
communications [31,32,42], where B represents the informa-
tion encoded in the signal and C is the noise in wireless
communications. In this case, we have

C̄iα = 1 + Ciα, Ciαi.i.d.N (0, σc/
√

M ),

Ai j =
∑
α∈M∗

C̄iαC̄T
α j =

∑
α∈M∗

CiαCT
α j + Ciα + CT

αi + 1. (F8)
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FIG. 5. The asymptotic spectrum of Ai j for different values of σc

by solving Eq. (F10) numerically.

Using Theorem 1.1 in Dozier and Silverstein [42], the
Stieltjes transform m(z) of Ai j satisfies

σ 4
c zm3 − 2σ 2

c zm + (
σ 2

c + z − 1
)
m − 1 = 0. (F9)

The asymptotic spectrum of Ai j can be obtained by m(z), the
solution of Eq. (F9) with

ρ(x) = lim
ε→0+

m(x − iε) − m(x + iε)

2iπ
. (F10)

The result is shown in Fig. 5. The minimum eigenvalue
reaches 0 nearly at σ ∗

c = 1, as predicted by the cavity
solution.

We emphasize that the phase transition point, derived from
Eq. (F9), does not change at different μ. In the original paper
by Marchenko and Pastur, Eq. (5) requires the elements are
i.i.d variables with mean 0 and variance σ 2. Recently, it has
been shown a nonzero μ contributes only one eigenvalue λ.
It is either in the domain of MP Law, λ ∈ [a, b] or off the
domain λ > b [43,44] and thus it does not affect the minimum
eigenvalue. We can understand it intuitively with a simple
example: 1 + μJ, where 1 is the identity matrix, J is a n × n
all-ones matrix. The eigenvalues can be calculated by

Det[(1 − λ)1 + μJ] = [1 − λ + (n − 1)μ](1 − λ)n−1.

It shows when n 
 1, it only contributes a very large eigen-
value 1 + (n − 1)μ and the others stay at 1.

APPENDIX G: PARAMETERS IN SIMULATIONS

All simulations are done with the CVXPY package [45].
The code is available on GitHub [38].

(1) Figures 1(b), 2(b), 3(c), and 3(d): the consumer ma-
trix C is sampled from the Gaussian distribution N ( μ

M , σc√
M

).
S = 100, M = 100, μ = 0, K = 1, σK = 0.1, m = 0.1, and
σm = 0.01, and each data point is averaged from 5000 inde-
pendent realizations. The model is simulated with Eqs. (2).

(2) Figure 2(c): the consumer matrix C is sampled from
the uniform distribution U (0, b). S = 100, M = 100, μ = 0,
K = 1, σK = 0.1, m = 0.1, σm = 0.01, and each data point is

averaged from 5000 independent realizations. The model is
described by Eqs. (2).

(3) Figure 2(d): the consumer matrix C is sampled from
the Bernoulli distribution Bernoulli(pc). S = 100, M = 100,
μ = 0, K = 1, σK = 0.1, m = 0.1, σm = 0.01, and each data
point is averaged from 5000 independent realizations. The
model is described by Eqs. (2).

(4) Figures 3(b), 11: the simulation is the same as
Fig. 2(b). Each spectrum is drawn from 10 000 independent
realizations.

(5) Figure 4: the consumer matrix C is sampled from the
Gaussian distribution N ( μ

M , σc√
M

). S = 100, M = 100, μ = 0,
K = 1, σK = 0.1, m = 0.1, and σm = 0.01. The model with-
out resource extinction simulated with Eqs. (2), and each data
point is averaged from 5000 independent realizations.. The
model with resource extinction is simulated with Eqs. (1), and
each data point is averaged from 4000 independent realiza-
tions. Each spectrum is drawn from 1 independent realizations
for S = 500.

(6) Figure 6: the simulation is the same as Fig. 2(b). Each
histogram is drawn from 10 000 independent realizations.

(7) Figure 9: the consumer matrix C is sampled from the
Gaussian distribution N ( μ

M , σc√
M

). S = 100, M = 100, μ = 1,
K = 1, σK = 0.1, m = 0.1, and σm = 0.01. For (C), ω = 1,
σω = 0, and model details can be found in Ref. [39]; for (D),
the dynamics is described in Eq. (17) in the Supplemental
Material of Ref. [19]. The noise is only applied on the con-
sumption matrix and D is kept the same at different σc. Each
data point is averaged from 4000 independent realizations for
(A), from 5000 independent realizations for (B), and from
1000 independent realizations for (C, D).

(8) Figure 10: the simulation is the same as Fig. 1(b)
except S = 200, M = 100. For the identity case, the con-
sumer matrix is obtained by concatenating the M × M identity
plus noise matrix and a (S − M ) × M Gaussian random ma-
trix. The model without resource extinction simulated with
Eqs. (2), and each data point is averaged from 5000 indepen-
dent realizations.

(9) Figures 13, 14, and 12: the simulation is the same as
Figs. 4(a) and 4(b). The model without resource extinction
simulated with Eqs. (2), and each data point is averaged
from 5000 independent realizations. The model with resource
extinction is simulated with Eqs. (1), and each data point is
averaged from 4000 independent realizations.

APPENDIX H: DISTINCTION BETWEEN EXTINCT AND
SURVIVING SPECIES

In the main text, we show that the value of species packing
S∗
M in Figs. 1 and 2. However, in numerical simulations, even
for the extinct species, the abundance is never exactly equal 0
due to numerical errors. As a result, we must choose a thresh-
old to distinguish extinct and surviving species to calculate S∗.
Since we are using the equivalence with convex optimization
to solve the generalized consumer-resource models [46,47],
we can easily choose a reasonable threshold (e.g., 10−10 for
both species since the surviving species are well separated in
two peaks (see Fig. 6).
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FIG. 6. Species abundance N in equilibrium at different σc. The
simulation details can be found at Appendix G.

APPENDIX I: SUSCEPTIBILITY MATRIX FOR LINEAR
RESOURCE DYNAMICS

In the quasistatic limit, Eqs. (A2) become

dNi

dt
= Ni

(
Ni

∑
α CiαKα

1 + ∑
j CjαNj

− mi

)
,

which can not be reduced to the Lotka–Volterra model.
Therefore, we have to rederive the susceptibility matrix for
Eqs. (A2).

To have well-defined susceptibilities, we introduce an aux-
iliary variable wα and Eqs. (A2) become

dNi

dt
= Ni

(∑
β

C̄iβRβ − mi

)
,

dRα

dt
= κα − wαRα −

∑
j

NjC̄ jαRα. (I1)

At the end we can set wα to 1 to recover Eqs. (A2). Employing
the results from Refs. [39,48], the new susceptibility matrix is

χR
αβ = − ∂R̄α

∂ωβ

, χN
iα = − ∂N̄i

∂ωα

, νR
αi = ∂R̄α

∂mi
, νN

i j = ∂N̄i

∂mj
,

(I2)

where the bar X̄ over the variable X denotes the steady-state
(equilibrium) solution.

For the extinct species and resources, by definition the
susceptibilities are zero. For this reason, we focus only on the
surviving resources and species. At steady state, Eqs. (I1) give

0 =
∑
α∈M

CiαR̄α − mi, (I3)

0 = Kα − ωαR̄α − R̄α

∑
j∈S∗

N̄jCjα, (I4)

where S∗ denote the sets of species, respectively, that survive
in the ecosystem at steady-state and M denotes the full sets
of resources as they all are nonzero for the linear resource

dynamics. Differentiating these equations yields the relations

0 =
∑
α∈M

Ciα
∂R̄α

∂ωβ

,−R̄αδαβ =
(

ωα +
∑
j∈S∗

N̄jCjα

)
∂R̄α

∂ωβ

+
∑
j∈S∗

∂N̄j

∂ωβ

CjαR̄α,

δi j =
∑
α∈M

Ciα
∂R̄α

∂mj
, 0 =

(
ωα +

∑
j∈S∗

N̄jCjα

)
∂R̄α

∂mi

+
∑
j∈S∗

∂N̄j

∂mi
CjαR̄α. (I5)

Substituting in for the partial derivatives using the susceptibil-
ity matrices defined above, we have

0 =
∑
α∈M

CiαχR
αβ, R̄αδαβ

=
(

ωα +
∑
j∈S∗

N̄jCjα

)
χR

αβ +
∑
j∈S∗

χN
jβCjαR̄α,

δi j =
∑
α∈M

CiανR
α j, 0 =

(
ωα +

∑
j∈S∗

N̄jCjα

)
νR

αi

+
∑
j∈S∗

νN
jiCjαR̄α. (I6)

These two equations can be written as a single matrix equation
for block matrices:[

C 0
diag(Wα ) GT

][
νR χR

νN χN

]
=

[
1 0
0 diag(R̄α )

]
, (I7)

where Wα = ωα + ∑
j∈S∗ N̄jCjα , Giα = CiαR̄α , and diag is the

operator transforming a vector to a diagonal matrix.
To solve this equation, we define two S∗ × S∗ matrices:

Ai j = ∑
α∈M∗ CiαCT

jα and Hi j = (
∑

α∈M∗
R̄α

Wα
CiαCT

jα )−1. Em-
ploying Eq. (3.2) for the square off-diagonal partition, a
straightforward calculation yields[

C 0
diag(Wα ) GT

]−1

=
[∑

i∈S∗
R̄α

Wα
CT

iαHi j
δαβ

Wα
− ∑

i, j∈S∗
R̄αCT

iα
Wα

Hi j
Cjβ

Wβ

−H
∑

j∈S∗ Hi jCjα/Wα

]
, (I8)

χR
αβ = R̄α

Wα

δαβ −
∑

i, j∈S∗

R̄αCT
iα

Wα

Hi j
Cjβ R̄β

Wβ

, (I9)

χN
iα =

∑
j∈S∗

Hi j
CjαR̄α

Wα

, νR
αi =

∑
j∈S∗

R̄αCT
jα

Wα

Hji, (I10)

νN
i j = −Hi j, i, j ∈ S∗ and α, β ∈ M∗. (I11)

We can see that the new susceptibilities: Hi j =
(
∑

α∈M∗
R̄α

Wα
CiαCT

jα )−1 is different with Ai j = ∑
α∈M∗ CiαCT

jα in
Eq. (4). Therefore, it can not behave exactly like Marchenko
Pastur distribution, shown in Fig. 7(b). However, since it is
very similar to the Wishart matrix, most of our results are still
preserved with Eqs. (2).
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(a)

(b) (c)

FIG. 7. Reproduce Fig. 3 in the main text with model Eqs. (2). The parameters are the same as Fig. 9.

APPENDIX J: ADDITIONAL FIGURES

The figures below are referred to in the main text.

FIG. 8. Reproduce Fig 1(b): the fraction of surviving species
S∗/M vs σc for M = 25 and M = 100. It shows M = 25 is enough
to reproduce our result in the main text. Theoretically, numeric con-
verges to our analytical result at the rate of 1

M . And it is true that a
smaller value of M can result in a larger fluctuation, corresponding to
a larger error bar. But the average converges to the same value which
is the thermodynamic limit we care about.
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(a)

(b)

(c)

FIG. 9. Community properties for generalized consumer-resource models under Gaussian noise. (a) MacArthur’s consumer resource model
with resource extinction. (b) Linear resource dynamics: the resource dynamics is changed to dRα

dt = Kα − Rα − ∑
i NiCiαRα . (c) With cross-

feeding: the dynamics is described in Eq. (17) in the Supplemental Material of Ref. [19]. The noise is only applied on the consumption matrix
and D is kept the same at different σc. In both models, B = 1. See Appendix G for details.
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(a)

(b) (c)

FIG. 10. Effects when S �= M. (a) Community properties, (b) the minimum eigenvalue λmin, (c) the mean sensitivity ν. All simulations are
the same as figures in the main text except S = 200, M = 100. See Appendix G for details.
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(a)

(b)

(c)

(d)

FIG. 11. Spectra of Ai j in different cases. (a) Uniform Noise: U (0, b) and (b) Binary Noise: Bernoulli(pc ); the engineered matrix B is an
identity matrix. (c) Gaussian noise and the engineered matrix B is a circulant matrix. (d) Gaussian noise and the engineered matrix B is a block
matrix. Note that Ai j are obtained from numerical simulations. See Appendix G for details.

(a) (b)

FIG. 12. Comparison between numerical simulations (scatter
points) and cavity solutions (solid lines) for χ at different σc for
different cases. (a) CRM without resource extinction, Eqs. (2). (b)
CRM with resource extinction, Eqs. (1). Note S∗ and M∗ are obtained
from the numerical simulations, although in principle they could be
obtained by solving the cavity equations directly.
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(a)

(b)

FIG. 13. Comparison of the minimum eigenvalue λmin and the
mean sensitivity ν between different distributions for the identity
case at different σc. (a) CRM without resource extinction, Eqs. (2).
(b) CRM with resource extinction, Eqs. (1). Note that the Bernoulli
and uniform distribution are mapped to the corresponding Gaussian
distribution μ = pcM, σc = √

M pc(1 − pc ) and μ = bM/2, σc =
b
√

M/12, respectively.

(a)

(b)

FIG. 14. Comparison the minimum eigenvalue λmin and the mean
sensitivity ν between different engineered matrices B at different
σc. (a) CRM without resource extinction, Eqs. (2). (b) CRM with
resource extinction, Eqs. (1).
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[27] V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for
some sets of random matrices, Math. USSR Sb. 1, 457 (1967).

[28] T. Rogers, I. P. Castillo, R. Kühn, and K. Takeda, Cavity
approach to the spectral density of sparse symmetric random
matrices, Phys. Rev. E 78, 031116 (2008).

[29] A. Altieri and S. Franz, Constraint satisfaction mechanisms for
marginal stability and criticality in large ecosystems, Phys. Rev.
E 99, 010401(R) (2019).

[30] E. Agliari, F. Alemanno, A. Barra, and A. Fachechi, On the
Marchenko-Pastur law in analog bipartite spin-glasses, J. Phys.
A: Math. Theor. 52, 254002 (2019).

[31] R. Couillet and M. Debbah, Random Matrix Methods for Wire-
less Communications (Cambridge University Press, Cambridge,
UK, 2011).

[32] P. Loubaton, P. Vallet et al., Almost sure localization of the
eigenvalues in a Gaussian information plus noise model: Ap-
plication to the spiked models, Electron. J. Probab. 16, 1934
(2011).

[33] G. Biroli, G. Bunin, and C. Cammarota, Marginally stable equi-
libria in critical ecosystems, New J. Phys. 20, 083051 (2018).

[34] F. Roy, G. Biroli, G. Bunin, and C. Cammarota, Numerical
implementation of dynamical mean field theory for disordered
systems: Application to the Lotka-Volterra model of ecosys-
tems, J. Phys. A: Math. Theor. 52, 484001 (2019).

[35] A. Altieri, F. Roy, C. Cammarota, and G. Biroli, Properties
of Equilibria and Glassy Phases of the Random Lotka-Volterra

Model with Demographic Noise, Phys. Rev. Lett. 126, 258301
(2021).

[36] M. Barbier, J.-F. Arnoldi, G. Bunin, and M. Loreau, Generic
assembly patterns in complex ecological communities, Proc.
Natl. Acad. Sci. U.S.A. 115, 2156 (2018).

[37] S. Butler and J. P. O’Dwyer, Stability criteria for complex
microbial communities, Nat. Commun. 9, 2970 (2018).

[38] https://github.com/Emergent-Behaviors-in-Biology/typical-
random-ecosystems.

[39] W. Cui, R. Marsland III, and P. Mehta, Effect of Resource
Dynamics on Species Packing in Diverse Ecosystems, Phys.
Rev. Lett. 125, 048101 (2020).

[40] L. Hogben, Handbook of Linear Algebra (Chapman and
Hall/CRC, London, UK, 2013).

[41] J. Grilli, M. Adorisio, S. Suweis, G. Barabás, J. R. Banavar, S.
Allesina, and A. Maritan, Feasibility and coexistence of large
ecological communities, Nat. Commun. 8, 14389 (2017).

[42] R. B. Dozier and J. W. Silverstein, On the empirical distribution
of eigenvalues of large dimensional information-plus-noise-
type matrices, J. Multivariate Anal. 98, 678 (2007).

[43] J. Baik, G. B. Arous, S. Péché et al., Phase transition of the
largest eigenvalue for nonnull complex sample covariance ma-
trices, Ann. Prob. 33, 1643 (2005).

[44] F. Benaych-Georges and R. R. Nadakuditi, The singular
values and vectors of low rank perturbations of large rect-
angular random matrices, J. Multivariate Anal. 111, 120
(2012).

[45] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, A
rewriting system for convex optimization problems, J. Control
Decis. 5, 42 (2018).

[46] R. Marsland III, W. Cui, and P. Mehta, The minimum envi-
ronmental perturbation principle: A new perspective on niche
theory, Am. Nat. 196, 291 (2020).

[47] P. Mehta, W. Cui, C.-H. Wang, and R. Marsland III, Constrained
optimization as ecological dynamics with applications to ran-
dom quadratic programming in high dimensions, Phys. Rev. E
99, 052111 (2019).

[48] W. Cui, J. W. Rocks, and P. Mehta, The perturbative resolvent
method: Spectral densities of random matrix ensembles via
perturbation theory, arXiv:2012.00663.

034416-19

https://doi.org/10.1103/PhysRevE.95.042414
https://doi.org/10.1088/1742-5468/aab04e
https://doi.org/10.1063/1.1703773
https://doi.org/10.1016/0040-5809(90)90025-Q
https://doi.org/10.1371/journal.pcbi.1008189
https://doi.org/10.1126/science.1253497
https://doi.org/10.1070/sm1967v001n04abeh001994
https://doi.org/10.1103/PhysRevE.78.031116
https://doi.org/10.1103/PhysRevE.99.010401
https://doi.org/10.1088/1751-8121/ab1934
https://doi.org/10.1214/EJP.v16-943
https://doi.org/10.1088/1367-2630/aada58
https://doi.org/10.1088/1751-8121/ab1f32
https://doi.org/10.1103/PhysRevLett.126.258301
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1038/s41467-018-05308-z
https://github.com/Emergent-Behaviors-in-Biology/typical-random-ecosystems
https://doi.org/10.1103/PhysRevLett.125.048101
https://doi.org/10.1038/ncomms14389
https://doi.org/10.1016/j.jmva.2006.09.006
https://doi.org/10.1214/009117905000000233
https://doi.org/10.1016/j.jmva.2012.04.019
https://doi.org/10.1080/23307706.2017.1397554
https://doi.org/10.1086/710093
https://doi.org/10.1103/PhysRevE.99.052111
http://arxiv.org/abs/arXiv:2012.00663

