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ABSTRACT

Motivation: Genetic networks are often described statistically using
graphical models (e.g. Bayesian networks). However, inferring the
network structure offers a serious challenge in microarray analysis
where the sample size is small compared to the number of considered
genes. This renders many standard algorithms for graphical models
inapplicable, and inferring genetic networks an ‘ill-posed’ inverse
problem.

Methods: We introduce a novel framework for small-sample infer-
ence of graphical models from gene expression data. Specifically, we
focus on the so-called graphical Gaussian models (GGMs) that are
now frequently used to describe gene association networks and to
detect conditionally dependent genes. Our new approach is based on
(1) improved (regularized) small-sample point estimates of partial cor-
relation, (2) an exact test of edge inclusion with adaptive estimation
of the degree of freedom and (3) a heuristic network search based on
false discovery rate multiple testing. Steps (2) and (3) correspond to
an empirical Bayes estimate of the network topology.

Results: Using computer simulations, we investigate the sensitivity
(power) and specificity (true negative rate) of the proposed framework
to estimate GGMs from microarray data. This shows that it is pos-
sible to recover the true network topology with high accuracy even for
small-sample datasets. Subsequently, we analyze gene expression
data from a breast cancer tumor study and illustrate our approach
by inferring a corresponding large-scale gene association network for
3883 genes.

Availability: The authors have implemented the approach in the
R package ‘GeneTS’ that is freely available from http:/www.stat.
uni-muenchen.de/~strimmer/genets/, from the R archive (CRAN) and
from the Bioconductor website.

Contact: korbinian.strimmer@Imu.de

INTRODUCTION

Biological processes in the cell such as biochemical interactions and
regulatory activities lead to complicated interaction patterns among
genes and gene products. It is one of the aims of systems biology
to provide suitable mathematical models for these networks. In this
regard, graphical models (Whittaker, 1990; Lauritzen, 1996) have
emerged as useful tools because they allow the stochastic descrip-
tion of net-like association and dependence structures in complex
high-dimensional data. At the same time, graphical models offer an
advanced statistical framework for inference.

*To whom correspondence should be addressed.

Consequently, many in part very complicated graphical models
such as Bayesian networks (e.g. Friedman et al., 2000; Segal et al.,
2003; Friedman, 2004), auto-regressive models (e.g. Yeung et al.,
2002; De Hoon et al., 2003) state-space models (e.g. Murphy, 2002;
Rangel et al., 2004) and graphical Gaussian models (GGMs) (e.g.
Kishino and Waddell, 2000; Toh and Horimoto, 2002a; Wu et al.,
2003; Dobra et al., 2004) have already been applied to genomic
data, and put to use in expression analysis.

Unfortunately, although graphical models are promising for the
analysis of gene interaction, their practical application is currently
strongly limited by the amount of available experimental data. At
first, this may seem paradoxical with the current high-throughput
facilities. Note however, while these tools now allow the user to
investigate experimentally a greatly increased number of features
(genes), the number of available samples has not, and cannot, sim-
ilarly been expanded. As a result, in a typical microarray dataset
the number of genes G will exceed by far the number of sample
points N. This poses a serious challenge to any statistical inference,
and also renders the estimation of genetic networks as an extremely
hard problem. This is corroborated by a recent study on the popular
Bayesian network method, in which Husmeier (2003) demonstrated
that this approach tends to perform poorly on sparse microarray
data.

Motivated by these challenges, great efforts are now being under-
taken to further extend the theory of graphical models to allow their
large-scale application on small-sample data (e.g. Wong et al., 2003;
Dobra et al., 2004). In this paper, we would also like to contribute
to this development by proposing a practical empirical Bayes frame-
work for inferring graphical models from sparse microarray data.
More specifically, we focus here on improving the inference of one of
the simplest classes of graphical models, the so-called GGMs. These
are similar to the most widely known Bayesian networks in that they
allow to distinguish direct from indirect interactions (i.e. whether
gene A acts on gene B directly or through a third agent C). As any
graphical model, they also provide a notion of conditional independ-
ence of two genes. However, in contrast to Bayesian networks GGMs
contain only undirected rather than directed edges. This makes graph-
ical Gaussian interaction modeling on the one hand conceptually
more simple, and on the other hand also potentially more widely
applicable (e.g. there are no problems with feedback loops as in
Bayesian networks).

GGMs have first been proposed as a model for the association
structure among genes by Kishino and Waddell (2000). However,
a number of difficulties arise when the graphical Gaussian modeling
concept is applied to the analysis of microarray data. First, standard
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GGM theory (Whittaker, 1990) can only be applied when N > G,
because otherwi sethe sample covariance and correl ation matricesare
not positivedefinite, whichinturn preventsthe computation of partial
correlations. Moreover, thereare often additional linear dependences
among the variables, which lead to the problem of multicollinearity.
This, again, renders standard theory of graphical Gaussian modeling
inapplicable to microarray data. Second, the statistical tests widely
usedintheliteraturefor selecting an appropriate GGM (e.g. deviance
tests) are valid only for large sample sizes, and hence are inappro-
priate for the very small sample sizes present in microarray datasets.
In this case, instead of asymptotic tests an exact model selection
procedure is required.

Therefore, to avoid these dimensionality problems, graphical
Gaussian modeling has so far been restricted to assess relation-
ships among either a rather small number of genes (Waddell and
Kishino, 2000; Bay et al., 2002; Wang et al., 2003) or among a
small number of clusters of genes (Toh and Horimoto, 2002a,b;
Wau et al., 2003). However, the resulting partial correlation coeffi-
cientsfor the clusters and the corresponding conditional dependence
properties are difficult to interpret. For instance, not all the genes
of one cluster will interact with all the genes of another cluster.
Furthermore, information regarding quality and strength of the asso-
ciation on the gene level is lost when only clusters of genes are
considered.

A novel small-sample framework for inferring
graphical Gaussian models

To resolve these issues, we propose here a novel framework for
inferring GGMs from small samples. This centers around three new
small sample point estimatesof partial correlation. A second key ele-
ment of this framework is a small-sample edge inclusion test where
the degree of freedom of the null distribution is estimated adapt-
ively from the data. This procedure exploits the parallel structure of
microarray datain asimilar fashion as an empirical Bayes approach
suggested by Efron et al. (2001) to identify differentially expressed
genes. Finally, multiple testing using the false discovery rate (FDR)
method i semployed for heuristic but computationally efficient model
selection.

Therest of the paper isorganized asfollows. Inthe next section, we
introduce the mathematical and statistical background of GGMs and
present all detailsof thenew small-sampleframework for inferringan
appropriate model. Subsequently, in the Results section we invest-
igate using extensive computer simulations the question of model
validity and the accuracy and power of network selection using the
proposed approach. Asan example, wethenillustrate our framework
by applyingit to alarge-scal e breast cancer dataset (West et al., 2001)
with 3883 genes and 49 samples. Finally, we discuss the advantages
aswell aspotential drawbacks of our framework and point out further
directions of research.

METHODS

Graphical Gaussian models

GGMs, also known as covariance selection models, are undirected graph-
ical models (Dempster, 1972; Whittaker, 1990; Edwards, 1995). Under this
approach, the observed datamatrix X with N rows(=samples) and G columns
(=genes) is considered to be drawn from a multivariate normal distribution
Ng(u, ) with some mean vector & = (u1,...,1g)' and positive definite
covariance matrix ¥ = (o;;), where1 < i,j < G. Viao;; = p;jo;0;, the

covariance matrix X can be further decomposed into variance components
a,? and the Bravais-Pearson correlation matrix P = (p;;).

A high correlation coefficient between any two genes may beindicative of
either (1) direct interaction, or (2) indirect interaction or (3) regulation by a
common gene. However, for the construction of a gene association network
only the direct interactions are of interest as only these correspond to edges
between two nodes (genes) in the resulting graph.

Inthe GGM framework, the strength of direct pairwise correlation is char-
acterized by the partial correlation matrix IT = (7r;;). These coefficients
describe the correlation between any two genesi and j conditioned on all
the remainder of the genes. For instance, the partial correlation 7712 between
genes 1 and 2 is simply the correlation cor(ey, €2) of the residuals ¢; and
€2 resulting from linearly regressing gene 1 and gene 2 against genes 3-G,
respectively. Standard graphical model theory (e.g. Edwards, 1995) shows
that the matrix IT is related to the inverse of the standard correlation coef-
ficients P. This leads to a straightforward procedure to compute IT via the
relations

Q=rP"'= (o)) @
and
Tij = —wij/\/Oii®j;. 2

Note that in the inversion step Equation (1), it is equally valid to use the
covariance matrix X instead of the correlation matrix P.

Thepartial correlation coefficientsallow for anumber of further interpreta-
tions. Asthe multivariate normal distribution is closed under marginalization
and conditioning, thepartial correlation ;; isthe correlation coefficient of the
conditional bivariate distribution for genes i and j. Furthermore, assuming
normality it can be shown that two variables are conditionally independent
given theremaining variablesif and only if the corresponding partial correla-
tion vanishes. Equivalently, the conditional independence graph of ajointly
normal set of random variables is determined by the location of zerosin the
inverse correlation matrix 2 (Whittaker, 1990).

In order to reconstruct a GGM network from a given dataset the follow-
ing procedure is typically employed. First, an estimate of the correlation
matrix P is obtained, usually via the unbiased sample covariance matrix
2 = (6j) = g2 (X — X)T(X — X) followed by standardization. Second,
estimates of partial correlation coefficients are computed from the sample
correlation matrix using Equations (1) and (2). Third, tatistical tests are
employed to determine which entriesin the estimated partial correlation mat-
rix 1 are significantly different from zero. Finally, the inferred correlation
structure is visualized by a graph, with edges corresponding to non-zero
partial correlation coefficients.

However, this algorithm is only applicable if the sample size N is larger
than the number of variables G. Otherwise, the sample covariance matrix is
not positive definite and cannot be inverted (e.g. Friedman, 1989; Hastie and
Tibshirani, 2004). Thisin turn prevents the direct computation of the partial
correlation coefficients. Unfortunately, thisisthe case for typical microarray
data where one has a data situation with N <« G. In addition, the small
sample size also renders most standard statistical tests for GGMs invalid, as
these usually rely on alarge sample size N for asymptotic validity.

Estimating partial correlation from small samples

In order to obtain reliable small-sample point estimates of partial correlation
coefficients, we propose two conceptually simple but effective variations of
the standard graphical Gaussian modeling framework. First, when inverting
the estimated correlation matrix 2 we employ the Moore-Penrose pseudo-
inverse. Second, we use bootstrap aggregation (bagging) to stabilize the
estimator.

The Moore—Penrose pseudoinverse (Penrose, 1955) is a generalization of
the standard matrix inverse that can also be applied to singular matrices and
that is based on the singular value decomposition (SVD). The correlation
matrix P can be decomposedinto P = U D VT where D isasquare diagonal
matrix of rank m < min(N, G) containing al non-vanishing singular values.
Thepseudoinverse P+ isthendefinedas P+ = vV D~ UT and requiresonly
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the trivial inversion of D. It can be shown that the pseudoinverse P is the
shortest length least-squares solution of P P+ = I, and hence reduces to the
standard matrix inverse where possible.

Bootstrap aggregation (Breiman, 1996) is a simple and very general
approach to improve upon an unstable estimator é(y) for a given set of
data y. The algorithm proceeds as follows:

(1) Generate a bootstrap sample y*? with replacement from the original
data. Repeat this process for each b = 1,..., B independently (e.g.
with B = 1000).

(2) For each data sample y*? calculate the estimate 6*2.

(3) Compute the bootstrap mean (1/B) Zf=l 6* to obtain the bagged
estimate.

In a nutshell, bagging is essentially a variance reduction method. Another
interpretation of the bagged estimate is as an approximate Bayesian posterior
mean estimate (Hastie et al., 2001).

Both these techniques combined allow us to construct a small-sample
estimator of the partial correlation matrix I1 = (7r;;). In particular, in this
paper we consider the following three possibilities:

I1': Use the pseudoinverse for inverting the sample correlation matrix Pto
obtain an estimate of I, without performing any form of bagging
(= ‘observed partial correlation’).

I1%: Use bagging to estimate the correlation matrix P, then invert the bagged
correlation matrix with the pseudoinverse to obtain an estimate of IT
(= ‘partial bagged correlation’).

I13: Apply bagging to the estimator I, i.e. use the pseudoinverse for invert-
ing each bootstrap replicate estimate P*”, then average the results
(= ‘bagged partial correlation’).

By construction, all three of these estimators can be applied to cases where
the sample size is smaller than the number of variables. However, they differ
drastically with respect to accuracy and power. This is investigated in detail
below using computer simulations (see Results section).

Null distribution of sample partial correlation

To address the statistical testing problem of non-zero partial correlation
Ho:7;j =0 versus Hj:mj #0, 3)

we require the sampling distribution of 7;; = p;; under the null hypothesis
m;j = 0 (for convenience, we drop the subscripts i and j in the following).

From Hotelling (1953), the distribution of the sample normal correlation
coefficient p = r is known exactly. For p = 0 we have

I'(x/2)

. _ _ 2\(k=3)/2
Jolri ) = (1= P2

(C))
where « is the degree of freedom. For the standard correlation coefficient the
degree of freedom k = N — 1 is determined by the sample size N. For p = 0
the variance of r also equals the inverse of «, i.e. Var(r) = 1/«.

The sample normal partial correlation coefficient 7 = p is distributed
precisely as the standard correlation coefficient p = r, only that « is reduced
by the number of eliminated variables (Hotelling, 1953). Thus, if there are
G variables (of which G — 2 have to be eliminated in order to compute the
pairwise partial correlation coefficients) the resulting degree of freedom is
k = N — G + 1. Note that this relationship implies that N cannot be smaller
than G if « is to remain positive.

In a small-sample setting, we cannot use the standard partial correlation
estimate I1 [Equation (2)] but rather have to rely on alternative estimators such
as T1', 112, 113 suggested above. Unfortunately, we cannot analytically derive
the sampling distributions of these estimators. However, it can be shown
numerically (for details see Results section) that their respective simulated
sampling distributions still assume the distributional form of Equation (4),
albeit with a smaller variance and hence with k > 0 even for N < G. Note
that in this case the degree of freedom « is not a simple function of N and G
but rather has itself to be estimated from the data.

Robbins-Efron-type inference of empirical test
distribution

In principle, given an appropriate choice of «, Equation (4) allows us to
compute p-values for estimated partial correlation coefficients and thus to
perform statistical testing with regard to the presence of edges in a GGM
network.

As we do not have repeated estimates of the partial correlation coeffi-
cient per individual edge it is not trivial to estimate the degree of freedom
k. However, we can utilize the highly parallel structure of the edge testing
problem and the fact that biomolecular networks are typically sparse (Yeung
et al., 2002). In a network considering G genes there is a large number
E = G(G—1)/2of possible edges. Only a small fraction n4 of these will cor-
respond to true edges, whereas for the remaining majority the corresponding
true partial correlation coefficients will vanish.

Therefore, we may assume that the partial correlation coefficients p across
all edges in the network follow a mixture distribution

f(p) =mnofo(psk) +nafalp), 5

where 19 and n4 are the priors for the null and alternative distribution, fp and
fa, respectively, with no +n4 = 1 and no > n4. The null distribution fy
is given by Equation (4). For reasons of simplicity, we assume here for the
distribution of partial correlation coefficients of the true edges f4 a simple
uniform distribution from —1 to 1. Note that for f4 other more complicated
distributions could easily be conceived, including non-parametric estimates.

Fitting this mixture distribution to the observed partial correlation coeffi-
cients (via optimizing the corresponding likelihood function or an EM-type
algorithm) allows to infer the parameters 7)o and <. It is then straightforward
to compute two-sided p-values for each possible edge in the correspond-
ing network using the exact null distribution fy with & as plug-in estimate.
Alternatively, one may also be interested in computing

fiafa(p)
fpik)’
i.e. the empirical posterior probability of an edge being present.

This approach, although new for edge detection in graphical models, is dir-
ectly inspired by similar approaches to detect differentially expressed genes
(Sapir and Churchill, 2000; Efron et al., 2001; Efron, 2003). There, the
mixture distribution models differentially expressed genes assuming that the
majority of investigated genes is not differentially expressed.

A key element in this procedure is that it turns a seemingly disadvantage
in the analysis, namely the large number of genes G in a microarray dataset,
into an advantage: with growing G the number of zero-edges no E becomes
larger, and hence it gets easier to estimate the null distribution from the data.
Note that this ‘Robbins—Efron-type’ inference (see Efron, 2003) enables one
to determine the sampling distribution fo from a large-dimensional point
estimate (!). A further benefit of using an empirical null distribution in a
large-scale testing situation is that it also additionally accounts for hidden
correlations and unobserved covariates (Efron, 2004).

Finally, we note that using the estimated degree of freedom k¥ we can
define an effective sample size Nggr = k 4+ G — 1. This reflects the relation-
ship between sample size and k for the standard normal partial correlation
coefficient, but also extends to the case when other estimators such as ﬁ',
I12 and I1° are employed.

Prob(non-zero edge|p) =

©)

Selection of graphical Gaussian model using false
discovery rate multiple testing

One simple strategy for choosing a GGM network consistent with the data
is to test each of the E = G(G — 1)/2 potential edges individually for
their presence in the final network, i.e. whether the corresponding partial
correlation coefficient is significantly different from zero (Whittaker, 1990;
Drton and Perlman, 2004). This proceeds as follows. First, a list of p-values
P1, P2, - -, PE is calculated, one for each edge. Subsequently, because of the
parallel testing situation a multiple testing procedure needs to be applied.
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Here, we employ the method of FDR multiple testing (Benjamini and
Hochberg, 1995). FDR control sthe expected proportion of fal se positives out
of the total number of rejections rather than the chance of any fal se positives.
Thismakesitideal for screening purposes (Storey and Tibshirani, 2003). The
basic algorithm is as follows:

(1) Construct the set of ordered p-values pqy, p@), ...
corresponding edges (1), e(2), . . . , €(k)-

(2) Thenletip bethelargesti for which py < (i/E)(Q/no).

(3) Finaly, reject the null hypothesis of zero partial correlation for all
edg%e(l), €(2)--+1€(ig)-

y P(E) with

It can be shown that this procedure controls the FDR at level Q (Benjamini
and Hochberg, 1995; Storey, 2002). Moreover, FDR isjustified both from a
frequentist aswell asfrom aBayesian perspective (Efron et al., 2001; Storey,
2002; Efron, 2003). Note that the above decision rule also requires the spe-
cification of no, the fraction of true zero partia correlations. This parameter
is either set to one, the most conservative choice as done by Benjamini and
Hochberg (1995), or it may be estimated adaptively from the data (Benjamini
and Hochberg, 2000; Storey, 2002). In our case, a suitable estimate 7jg is
available from the fit of Equation (5).

Using a multiple testing procedure for GGM selection has the advantage
that it is practical and computationally efficient also for large numbers of
genes. Nevertheless, we are well aware that this is a heuristic and only an
approximation to an exhaustive GGM search. Unfortunately, the number of
possible network topologies grows super-exponentially with the number of
nodes. Thus, an exhaustive network enumeration is necessarily limited to
toy cases. Other heuristic searches such as backward and forward selection
(Whittaker, 1990) do not necessarily guarantee a better fit for large G than
multiple testing (Drton and Perlman, 2004). However, stochastic searches
such as Bayesian MCM C sampling of GGMs may prove to be more effective
(for recent devel opments see Wong et al., 2003; Dobra et al., 2004).

Recipe of analysisand computer program

Inanutshell, our suggested framework for inferring large GGMs from small-
sample data comprises the following steps:

(1) Chooseastitablepoint estimator of partial correlation (oneof I, f12,
118), see simulation study and our recommendations in the Results
section.

(2) Compute partial correlation estimates for each possible edge.

(3) Estimate the degree of freedom « by fitting the mixture distribution
from Equation (5).

(4) Computetwo-sided p-valuesand posterior probabilitiesfor each edge.

(5) Use FDR multiple testing for the selection of edgesto beincluded in
the GGM.

(6) Visualize the resulting network structure.

We have implemented this approach in the R package ‘GeneTS
(versions 2.0 and later). It is distributed under the terms of the
GNU General Public License and freely available from http://www.stat.
uni-muenchen.de/~strimmer/genets/, from the R package archive (http:/
cran.r-project.org) and from the Bioconductor Web page (http://www.
bioconductor.org).

Visualization of theinferred networksrequiresadditional installation of the
Bioconductor R packages ‘ Rgraphviz' by Jeff Gentry and ‘graph’ by Robert
Gentleman (Figs 1 and 7).

RESULTS

Inorder toinvestigatethe statistical propertiesof the proposed frame-
work to inferring GGMs from small samples, we conducted a series
of extensive computer simulations. Subsequently, we re-analyzed
molecular data from a microarray study of breast cancer tissue

@D ) @

Fig. 1. Simulated sparse network with G = 100 nodes and 99 edges
(corresponding to an edge fraction of n4 = 0.02). Note that in this figure
branch lengths are purely due to the layout of the graph and do not indic-
ate the strength of the correlation between two connected nodes. Gray lines
indicate negative partial correlation, whereas edges with positive correlation
are drawn in black.

Table 1. Definition of quantities used for assessing GGM network
reconstruction

Quantity Definition

Number of true edges TP+ FN =nsE
Number of zero-edges TN+ FP = noE
Significant edges TP+FP=S

False positive rate E(FP/(noE)) = a;
False negative rate E(FN/(naE)) = ay1
True negative rate (specificity) 1—ay

True positive rate (sensitivity, power) 1—ayy

Positive predictive value
False discovery rate

PPV = E(TP/S|S > 0)
FDR = E(FP/S|S > 0)

samples (West et al., 2001) and inferred acorresponding large-scale
gene association network.

Simulation setup

In our analysis of simulated data we used the following approach
to generate random graphical models and data. It allows to control
parameters of interest such as the number of nodes G, the fraction
of non-zero edges 4 and the sample size N of the simulated data.

First, partial correlation matrices IT were generated by an
agorithm, which guarantees that the resulting matrices are always
positive definite. This method proceeds as follows:

(1) Start with an empty, symmetric G x G matrix (with zero
diagonal elements).
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Fig. 2. Mean squared error of the three small-sample estimators 1%, 12 and
I13 in dependence of sample size for G = 100 genes. The areas designated
‘small N', ‘critical N’ and ‘large N’ are defined relative to the number of
genesG.

(2) Choose randomly the off-diagona positions corresponding
tothe ns E non-zero edges, and fill in preliminary correlation
valuesdrawn from the uniform distribution between —1and 1.

(3) Compute columnwise sums of the absolute values of the mat-
rix entries, and set the corresponding diagonal element equal
to this sum plus a small constant (e.g. 0.0001). This ensures
that the resulting matrix is diagonally dominant, and thus
positive definite.

(4) Standardize the matrix so that al the diagonal entries equal 1
to obtain thesimulated true partial correlation matrix IT which
in turn represents the true GGM.

An example of a simulated network with G = 100 nodes and
na = 0.02 is shown in Figure 1. This choice of G and 4 implies
that there are 99 true edges out of 4950 potential edges. Note that
even for small values of 14 theresulting ‘sparse’ network still 1ooks
quite dense. Thisis because the number of available edges E grows
with the square of the number of variables G.

Second, simulated data of the desired sample size N were gener-
ated as follows. From IT the true pairwise correlation matrix P was
computed via reverse application of Equations (1) and (2). AsTI is
positive definite, so is its inverse and the corresponding matrix P.
Subsequently, samplesof length N weredrawn from the multivariate
normal distribution with mean zero and the correlation structure P.

In the next step, the simulated data were used to obtain point
estimates 114, [12 and 13. These were in turn compared with the
original true matrix I1. As a measure of the accuracy of the point
estimates, we employed the squared error loss L(IT¢, IT) = [|TT' —
n|j% =, ; (& —mij)* Theexpected |oss (risk), or mean squared
error (MSE), was estimated by averaging L(IT', IT) over multiple
simulation runs.

Then, after fitting the mixture distribution, we used the estimate «
to compute the effective sample s’zevia]\?eff =k + G —1 Findly,
to assess the network reconstruction by multiple testing of edges
we counted true positives TP (correctly identified true edges), false
positives FP (spurious edges, i.e. not recognized zero-edges), true
negatives TN (correctly identified zero-edges) and fal senegatives FN
(not recognized true edges). From thisinformation, we estimated the

Effective sample size

o
B ] oA
I1
] N2
N 8 ° 0
v 3 A3
%— . I1
o
ng o
@
n
o O©
S -
2
]
5 8
5
o -

50 100 150 200
sample size N

Fig. 3. Effective sample size Ngt for the three investigated small-sample
point estimators of partial correlation in dependence of true sample size for
G = 100 genes.

TN rate (specificity) and the TP rate (sensitvity). Table 1 provides
thelist of definitions of these quantities. We al so computed estimates
of the positive predictive value (PPV), i.e. the expected fraction of
true edges among all significant edges.

Analysis of smulated data

Accuracy of point estimates First, we investigated the accuracy
of the point estimators 1%, 12 and I13 to recover the true partial
correlation matrix IT in dependence of the sample size N.

We varied the network parameters so that N = 10, 20,.. ., 210,
G = 20-210 and n4 = 0.01-0.2. For a fixed network size with
a given proportion of non-zero edges n4, we randomly generated
GGMs and simulated data as described above. The number of boot-
strap replicates for bagging was set at B = 1000, and we conducted
R = 50 simulations for each setting of N and G.

Figure 2 shows as an example the graphs resulting from simula-
tionsrun with G = 100, n4 = 0.02and N = 10,20,...,210. The
same qualitativeresultswerea so obtained with all other investigated
combinations of G and n4 (data not shown). The most striking res-
ult from these simulations is the existence of three different regions
(N < G, N ~ G and N > G) where all three estimators exhibit
very different properties.

For large samples with N > G the point estimators IT%, T12 and
112 mainly agree with each other, with the same low error. Note that
thisistheonly region where‘classical’ graphical Gaussian modeling
theory isvalid.

On the other hand, for very small N « G the best point estimate
is clearly obtained by I12. This can be explained as follows: I12 is
the only one of the three investigated estimators that is based on a
positive definite estimate of the correlation matrix, as averaging over
bootstrap sampl e correl ation matrices prb actsasimplicitregulariza-
tion procedure (cf. Friedman, 1989). Also note that P is unbiased
and hence E(P) = P ~ (1/B) Y_;_, P**. The benéfit is that the
subsequent matrix inversion to obtain I12 can proceed with little loss
of accuracy.

In the ‘critical N’ zone with N ~ G a striking dimensionality
resonance effect (Raudys and Duin, 1998; Skurichina and Duin,
2002) is observed. The MSE of IT! increases dramatically around
N =~ G, with decreasing error when the sample size decreases. This
‘peaking phenomenon’ is well known in small-sample regression
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Fig. 4. Quantile—quantile plots of the observed null distribution of 1%, [12
and 18 for G = 100 genes. Top row: large sample size (N = 200). Bottom
row: small samplesize (N = 20).

and classification problems and is due to the use of the pseudo-
inverse (Raudysand Duin, 1998). It can beunderstood asfollows. For
N =~ G, theeigenvaluesof the sample correl ation matrix arestrongly
distorted in comparison with those of the true correlation matrix,
thereforethelargest and smallest eigenval uesarestrongly biased (e.g.
Friedman, 1989). This causes the corresponding SVD directions in
the pseudoinverseto become highly overestimated. Regul arization of
the correlation matrix (e.g. by bagging) reduces this error dramatic-
ally (Skurichina and Duin, 2002). This can be immediately seen by
comparing I1* with the two bagged estimators [12 and I12 that both
demonstrate a very good performance in the ‘critical N’ zone and
exhibit a considerably lower error than 1.

Effective sample size Next, we conducted a further simulation
study, similar in set-up as above to study the dependence of the
effective sample size Ngfp = £ + G — 1 from the actual samplesize.
The results from an example run with G = 100 nodes are shown in
Figure 3.

A number of thingscan belearned fromthisfigure. First, theeffect-
ivesamplesize Ng; isalwaysgreater than thenumber of variables G,
regardlessof the actual samplesize. Thisisnoteworthy especially for
small samplesizes N « G. Second, whenever the effective sample
size Ny islarge, thenthe MSE issmall (Fig. 2). Thisisparticularly
pronounced for estimator f12inthe‘small N’ zone and for estimator
I13 in the ‘critical N’ zone. Finally, asalarge Nt implies alarge 2
we note that the variance of the null distribution decreases with the
growing effective sample size. This is an important criterion when
choosing an appropriate estimator (see subsection below for some
suggestions).

Validation of null distribution In further studies, we verified that
under the null hypothesis of no partia correlation the three proposed
small-sample estimators I1%, 12 and 13 do indeed follow the the-
oretical distribution suggested in Equation (4). Thisis important to
avoid systematic biasin the statistical testing of edges.

In Figure 4, we show example quantile—quantile plots comparing
the empirical with the theoretical null distribution for large (N =
200, top row) and for small (N = 20, bottom row) sample size. In
each case, the data were simulated assuming G = 100 genes and an
empty ‘network’ with no edges as underlying model.
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Fig. 5. Top row: Quantile—quantile plots for the observed mixture distribu-
tionswith N = 20, G = 100and 4 = 0.02. Bottom row: Thecorresponding
empirical posterior probability plots.

Thefirst row of Figure4 showsthat, asexpected, for large N all the
observed correlation coefficients fit the theoretical null distribution
very well. The estimates of the degree of freedom « are also broadly
equivalent acrossthethree estimators 1%, [12 and I13. Notethat [T is
identical to theclassic partial correlation estimator for N = 200, and
accordingly the corresponding estimate « matches the theoretically
expected value k = 101.

For comparison, inthe second row of the samefigure, the quantile—
quantile plots are shown for the much smaller samplesize N = 20.
For both 1! and I1° clearly the observed null distributions still fit
thetheoretical distributionswell. Theplot for [12 indicatesastronger
curtosis and slightly broader tails of the empirical compared to the
theoretical distribution. Nevertheless, the fit between theoretical and
empirical distribution is still good.

Onefurther point to noteisthat for small samplesthe variability of
partial correlation estimates and the estimated degrees of freedom «
differ considerably among the investigated estimators. For N = 20
and G = 100 the estimator [12 exhibits by far the smallest variance
and largest <.

Fit of mixturedistribution  Subsequently, we a so checked thefit of
the mixture distribution [Equation (5)] in the presence of true non-
zero correlations. The results from a small-sample simulation with
N =20, G = 100 and n4 = 0.02 are displayed in Figure 5.

The top row of Figure 5 shows the quantile-quantile plots of the
observed distribution of partial correlation coefficients versus the
theoretical null distribution. We observe broader tails of the empir-
ical ascompared to thetheoretical distribution. Thisisexpected asin
thiscasetheempirical distributionisamixtureof thenull distribution
and the alternative distribution for the non-zero correlations belong-
ing to the true edges (indicated in the plots by cross symbols). The
proportion of zero-edges ng is estimated accurately, and the estim-
ates of the degree of freedom « of the null distribution are similar to
the corresponding estimates for N = 20 in Figure 4.

The bottom row of Figure 5 depicts the corresponding empir-
ical posterior probability plots [Equation (6)]. The probability of
an observed partial correlation to correspond to atrue correlation is
approximately one for large correlation strengths and quickly van-
ishes for smaller absolute values. Only the tails of the empirical
mixture distribution contain the statistically significant edges. The
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Fig. 6. Power, positive predictive value and false positive rate for recovering the true GGM network. Table 1 provides alist of definitions of the investigated
quantities, and see the main text for the the simulation setup with G = 100 genes.

width of characteristic U-shape of the posterior probability plot is
determined by the degree of freedom « of the null distribution. This
shows that using an estimator with a small variance is advantage-
ous asthisallowsto identify statistically significant edges even with
relatively small absolute value of partial correlation.

Sensitivity and specificity of GGM selection  Finally, we spent a
largeamount of computational effort on simulationstoinvestigatethe
statistical properties of GGM selection using FDR multiple testing.

We conducted simulationswith N ranging from 10 to 210 in steps
of 10, G = 100and 4 = 0.02. For N < 110weperformed R = 500
repetitions (i.e. simulation of GGM network and data) per sample
size, whereas for reasons of computational economy only R = 50
repetitions were done for N > 110. The GGMs were inferred by
multipletesting of E = 4950 edgeswith the desired FDR level fixed
a QO = 0.05.

For each inferred network, we counted the number of true positive
features (i.e. the number of correctly recognized true edges) as well
asthe number of truenegatives(i.e. thenumber of correctly identified
zero-edges). From these raw statistics, and repeated simulations of
networks and data, we obtained estimates of thefal se positiverate, of
power, and of the PPV for 1%, [12 and I13 at agiven sample size N.
The precise definitions for theseterms are given in Table 1. Figure 6
summarizes our results.

All three small-sample estimators, I1%, T12 and I13, exhibit the
same low empirical false positive rate regardiess of N. For large
N > 170 they also agree in power and in PPV. However, they differ
drastically inthesmall-samplecase N < G andfor N =~ G. Interms
of power, the bagged estimators both 12 and 13 consistently outper-
form the simple estimator IT* that faresrather poorly particularly for
N < G. Inthe latter region I12 exhibits the overall highest power,
whereasfor N ~ G and sample sizes slightly above G the estimator
I18 performs the best.

The largest PPV is generally obtained by using the estimator [12.
However, for very small sample size the PPV of 12 decreases
sharply; this is most probably due to the imperfect fit with the
theoretical null distribution (cf. Fig. 4).

A further noteworthy result from all our simulationsisthat closeto
G = N thereisgeneraly very little power to infer the true network
structure. This may again be a consequence of the ‘dimensionality
resonance’ phenomenon discussed above.

Finally, we would like to note that all these simulations and the
resulting estimates are quite conservative. Thisis because we gener-
ated true GGMs in such a way that they contained edges with both
strong as well as weak true correlation. The latter are notoriously
difficult to detect (cf. Fig. 5) and this consequently depressesthetest
results.

Choice of small-sample estimator

From the above analysis of simulated datait is clear that the estim-
ators IT%, I12 and IT° perform very differently. As a summary, we
suggest thefollowing guidelines for choosing a suitabl e estimator:

I1%: Should only be used for N > G, otherwise it lacks statistical
power. Notethat inthis‘largeN’ region the other two estimators
perform equally well but are computationally slower due to
bagging.

I12: Best used for small-sample applicationswith N < G. Here, the
main advantages of 12 are its small variance (large effective
samplesize) and itshigh accuracy asapoint estimate. It exhibits
the overall best power inthe ‘small N’ zone. Furthermore, it is
computationally less expensive than I13. However, noteits low
PPV for very small N.

I13: Isbest used in the ‘critical N’ zone where it offers small error
and large effective sample size. For N dightly larger than G
this estimator also provides the overall best power, though in
terms of PPV this estimator performs less well than I12.

As a result, this particularly promotes [12 as an estimator of
choice for the inference of GGM networks from small-sample gene
expression data.

Molecular data

Breast cancer dataset We now illustrate the utility of the proposed
empirical Bayes framework of inferring GGM networks from small
samples by application to alarge-scale biological dataset. More spe-
cifically, we re-analyzed gene expression data from a breast cancer
study described in West et al. (2001).

Preprocessing and calibration This dataset comprises 49 tissue
samples and gene expression was measured for 7129 genes/probes
using Affymetrix hu6800 chips. We downloaded the corresponding
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Fig. 7. Subnetwork consisting of 96 genes centered around the £.SR2 gene. This net was extracted from aglobal network with G = 3883 genes reconstructed
from the breast cancer data of West et al. (2001) using the small-sample estimator I12. See the text for abiological interpretation of selected genes neighboring

ESR2.

CEL data from the Duke University Center for Genome Techno-
logy (http://data.cgt.duke.edu/West/PNASCel1.zip). We then calib-
rated and normalized the raw data to obtain robust multiarray
average (RMA) expression measures (Irizarry et al., 2003). This
was done using the ‘affy’ package in Bioconductor version 1.3
(http://www.bioconductor.org).

Subsequently, we removed all the sequencesthat varied only min-
imally or on low levels. Specifically, we screened out genes whose
expression levels across all samples varied <2-fold (corresponding
to aRMA difference <1.0, as RMA is a measure on the log-base 2
scale) or whose maximum RMA intensity valuewas <9.0. Asares-
ult of the prescreening gene expression, data for 3883 genes across
49 samples remained for further analysis.

Inference of global association network Inorder toinfer the global
association structure and the corresponding GGM network for all
3883 genes, we employed the small-sample estimator I12 with B =
10000 bootstrap replications. The computation of the estimate of the
partial correlation matrix—a 3883 times 3883 matrix with entries
for 7536903 possible edges—required ~20 h on a standard Intel
Pentium 4 workstation running under the Linux operating system.
The subsequent fit of the mixture distribution [Equation (5)] res-
ulted in an estimated degree of freedom ¢ = 4601.98 with 5o =

0.9924. Using the FDR method with a desired level O = 0.05 we
determined 88 822 significantly non-zero coefficients, corresponding
to a p-value cutoff of 0.0006 and a threshold of partial correlation
7 > 0.051. Note that for this size of network most of the coeffi-
cients are very close to zero, so even small values are statistically
significant. Thisis also reflected in the large value of <.

From a statistical perspective, we caution that particularly in an
extreme small-sample setting not all statistically significant edges
will necessarily correspondtotrueedges(low PPV). To beonthecon-
servative side, we therefore advise to take the theoretical threshold
only as minimal lower bound and also to consider larger cut-off
values.

CNR2 receptor is most-connected gene  Because of the large num-
ber of nodes and edges it is difficult to visualize the resulting global
network structure (however, see below for a discussion on a subnet-
work). However, the degree of connectivity of each gene is more
easily amenable and aso highly informative.

For example, in our inferred GGM network for the investigated
breast cancer dataset the cannabinoid receptor 2 gene (CNR2), also
known as CB2 receptor, is the best-connected gene, as it contains
significant correlationswith 75 (1) other genes. The peripheral’ can-
nabinoid receptor CNR2 is mostly expressed in the immune system,
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and unlike the ‘central’ CNR1 receptor it isunrelated to cannabinoid
psychoactivity.

The existence of such ‘super hubs' in genetic networks is well
known (e.g. Barabasi, 2004). The interesting point about CNR2 is
that it seemsto be directly involved in controlling tumor growth. It
has been characterized as putative oncogene for acute myeloid leuk-
emia(Jordaet al., 2003). In addition, it hasbeen shown that targeting
CNR2 can lead to induction of apoptosisin malignant lymphoblastic
disease (McKallip et al., 2002). Furthermore, the stimulation of
CNR2 leads to aregression of skin cancer tumors (Casanova et al.,
2003).

Subnetwork of the ESR2 gene  For further illustration of the com-
plexity of the inferred global network, we now briefly describe the
genesin theimmediate surroundings of the ESR2 gene (the estrogen
receptor 2). Thisgenewas selected as seed gene’ for the subnetwork
because of itsrole in the pathobiology of breast cancer tumors (e.g.
West et al., 2001). In Figure 7, dl the 95 genes that are correlated
with ESR2 through at most five links are shown. To reduce noise in
this figure only edges with partial correlations with 7 > 0.13 are
shown. Interestingly, many close neighbors of ESR2 in this subnet-
work are known to be implicated in the development of malignant
neuroplastic disease.

For example, ELK3 (also known as ERP, NET or SAP2) belongs
to the Ets family of transcription factors. Ets proteins have been
implicated in the regulation of gene expression during a variety of
biological processes, including growth control, transformation and
T-cell activation in many organisms. Loss of normal control is often
associated with conversion to an oncoprotein (Wasylyk et al., 1993).

On the left to the ESR2 gene sits the human CD7 antigen (also
known as gp40) whichisacell surface glycoprotein found on thymo-
cytesand mature T-cells. CD7 isoneof the earliest antigensto appear
on cells of the T-lymphocyte lineage, and the most reliable clin-
ical marker of T-cell acute lymphocytic leukemia (Aruffo and Seed,
1983).

The MLL3 gene, directly linked in our network with ELK3 and
LADF4, isamember of the TRX/MLL gene family. It is associated
with leukemia and devel opmental defects (Ruault et al., 2002).

Further down in the network one finds LAF4, a gene responsible
for lymphocyte differentiation. Together with MLL it isinvolved in
lymphoblastic leukemia (von Bergh et al., 2002).

Many more genes depicted in Figure 7 are related to the devel-
opment of cancer (e.g. see the CancerGene database at http://caroll.
vjf.cnrs.fr/cancergene/). Hence, we are cautiously optimistic that the
inferred correlation network may indeed be useful as astarting point
from which to generate further medical and biochemical hypotheses.

DISCUSSION
Key contributions and novel aspects

In this paper, we have introduced a conceptually simple yet versatile
and computationally fast framework for estimating large GGMsfrom
datasets of small sample size. The development of this approach
was motivated by the challenge of inferring genetic networks from
nowadays microarray data which typically contain only relatively
few sample points compared to the number of investigated genes.
Thiswill continue to be an important issue also in the future: sample
Sizeis primarily restricted by the availability of tissue samples, and
is not necessarily increased by improved technol ogy.

Our framework relies on three key components:

(1) Recognizing that small sample inference requires explicit
regularization, we propose several new estimators of partial
correlation. In particular, we employ a combination of SVD
and bagging in order to compute improved coefficients (this
corresponds to Oth and 1st order regularization, respectively).

(2) We present an empirical Bayes approach to detect statistic-
ally significant edges. This allows to infer from the high-
dimensional point estimate of partial correlations the exact
null distribution needed for statistical testing, and also exploits
the sparse degree of connectivity in real genetic networks. In
microarray analysis, a similar approach is aready success-
fully being used to detect differential expression (Efron, 2003,
2004).

(3) We suggest a heuristic to perform approximate model
(network) selection using multiple testing using the FDR
method.

To our knowledge the present method isthefirst that uses an exact
distribution (i.e. onethat isvalid for finite N) to test and infer GGMs
on the gene-level from short microarray data. Thus, our approach
may be regarded as an extension of earlier work by Waddell and
Kishino (2000); Toh and Horimoto (2002a,b); Bay et al. (2002) and
Wau et al. (2003). Furthermore, we have conducted extensive simula
tions to investigate the performance of the proposed approach in the
dependence of sample size. These appear to be notably absent from
many previous studies, as pointed out before by Husmeier (2003).
In addition, we have verified our method by application to arealistic
large-scale problem. We note that in contrast to a related MCMC
approach by Dobra et al. (2004) our method can be run on low-cost
PC hardware (no parallel cluster needed).

Review of GGM model assumptions

Our approach contains a number of implicit assumptions that need
to be critically assessed.

First, GGMs are based on multivariate normality. Generally, this
appears to be unproblematic given that calibration and normaliza-
tion procedures are routinely used to preprocess gene expression
measurements.

Second, more critical is the assumption of linear relationships
among the investigated variables. While this may be a good approx-
imation in many cases, we are well aware that a GGM has limited
representational power if non-linear or combinatorial effects are
present in the data. There are approaches that allow to test for devi-
ations from linear models (Cox and Wermuth, 1994) but for small
samples this may turn out to be very difficult.

Third, there may be (linear) higher order interactions among more
than two variables. GGMs in general model higher order depend-
encesviathe notion of cliques (i.e. fully connected groups of nodes).
However, our heuristic model search using multiple testing is based
on evaluating pairwise interaction only. Nevertheless, cliques can
still oceur in the inferred network, hence our approach will at least
approximately detect higher order effects.

Relation to other probabilistic approachesfor modeling
genetic networks

GGMs belong to the large class of linear graphical models (e.g.
MacKay, 2003). Notethat most other statistical methodsfor inferring

762

€20z Joquiadaq €z uo Jasn Aieiqim N30 Aq 11266 L/7G2/9/1Z/3101HE/SOIELLIoJUIOIG/WOS" dNO™DIWapEDE//:Sd]Y WOy POPEOjUMOC


http://caroll

Small sample inference of genetic networks

genetic networks also fall into this group (e.g. D’haeseleer et al.,
2000; Bay et al., 2002; DeHoon et al., 2003; Wu et al., 2003; Rangel
et al., 2004; de la Fuente et al., 2004). Nevertheless, the important
issue of regularization in the presence of small samples has only
been discussed in a handful of papers (van Someren et al., 2001;
Yeung et al., 2002; Liao et al., 2003; Dobra et al., 2004). One of the
purposes of this paper isto further draw attention to this problem.

During thereview processareferee hasrepeatedly pointed out that
Bayesian networks are superior to GGMSs as in theory the former
allow to model non-linear relationships. If alot of dataare available,
thisiscertainly true. In practice however, owing to the paucity of the
dataat hand, it is not generally possible to infer these non-linearities
nor the global network structure (Husmeier, 2003; Friedman and
Koller, 2003). Furthermore, the often exercised discretization causes
information loss and might considerably influence the obtained res-
ults. Moreover, often Bayesian networks are in fact also linearized,
which for time series data turns them into linear state-space models
(Murphy, 2002).

Here, wesimply argue that to model gene association and depend-
ence on small-sample datasets it is prudent to choose a graphical
model (such asaGGM) that requires very few assumptions and only
aminimal number of parameters. Notethat we do not endorse GGMs
asthe ‘true model’ for genetic networks.

Challenges and outlook

There are many directions that may be considered for further
research. We believe that particularly three points are of prime
importance.

First, the present approach needs to be properly adopted to time
seriesdata. While part of thelongitudinal correlation will be accoun-
ted for by the empirical fit of the null distribution, explicit dynamic
and temporal elementsin the model will be crucia for inferring dir-
ected relationships. GGMs have been generalized to time series
models (e.g. Dahlhaus, 2000), and there are many other graphical
modelsfor time seriesdata (e.g. Murphy, 2002; Rangel et al., 2004).

Second, for al of the above-mentioned models it will be crucial
to study more intensively appropriate regularization procedures. We
are currently investigating a variety of methods that may lead to a
better fit of the null distribution, and thus enhance statistical testing
of edges.

Third, more research needs to be donein the field of model selec-
tion for geneassociation networks. In particular, the quality of search
heuristics such asthe one presented in this paper should be compared
thoroughly with sol utions obtained with exact approaches (only pos-
sible for small examples) and with those from the various proposed
stochastic searches (e.g. Wong et al., 2003).

In conclusion, we find that the graphical modeling framework isa
suitabl e statistical approach to modeling molecul ar genetic networks,
but inference and appropriate model selection for small-sample data
remain challenging. Our approach based on GGMs aims to be par-
ticularly simple and computationally efficient. We hope that it may
serve as an useful and practical exploratory tool and perhaps also as
astarting point for further development.
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