graph_tool.collection.LCF_graph#
- graph_tool.collection.LCF_graph(n, shift_list, repeats)[source]#
Returns the cubic graph specified in LCF notation.
- Parameters:
- n
int Number of nodes. The starting graph is the n-cycle with nodes \(0,\dots,n-1\). (The empty graph is returned if
n < 0.)- shift_list
list A list \([s_1,s_2,\dots,s_k]\) of integer shifts \(\mod n\).
- repeats
int Integer specifying the number of times that shifts in
shift_listare successively applied to eachv_currentin the n-cycle to generate an edge betweenv_currentand v_current + shift mod n.
- n
Notes
The Lederberg-Coxeter-Fruchte (LCF) notation is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry [LCF].
See, for example,
dodecahedral_graph(),desargues_graph(),heawood_graph()andpappus_graph().For
v1cycling through the n-cycle a total ofk * repeatswith shift cycling through shiftlist repeats times connectv1withv1 + shift mod n.References
Examples
The utility graph \(K_{3,3}\)
>>> g = gt.LCF_graph(6, [3, -3], 3)
The Heawood graph
>>> g = gt.LCF_graph(14, [5, -5], 7)