graph_tool.correlations.combined_corr_hist#
- graph_tool.correlations.combined_corr_hist(g, deg1, deg2, bins=[[0, 1], [0, 1]], float_count=True)[source]#
Obtain the single-vertex combined correlation histogram for the given graph.
- Parameters:
- g
Graph Graph to be used.
- deg1string or
VertexPropertyMap first degree type (“in”, “out” or “total”) or vertex property map.
- deg2string or
VertexPropertyMap second degree type (“in”, “out” or “total”) or vertex property map.
- binslist of lists (optional, default: [[0, 1], [0, 1]])
A list of bin edges to be used for the first and second degrees. If any list has size 2, it is used to create an automatically generated bin range starting from the first value, and with constant bin width given by the second value.
- float_countbool (optional, default: True)
If True, the bin counts are converted float variables, which is useful for normalization, and other processing. It False, the bin counts will be unsigned integers.
- g
- Returns:
- bin_counts
numpy.ndarray Two-dimensional array with the bin counts.
- first_bins
numpy.ndarray First degree bins
- second_bins
numpy.ndarray Second degree bins
- bin_counts
See also
assortativityassortativity coefficient
scalar_assortativityscalar assortativity coefficient
corr_histvertex-vertex correlation histogram
combined_corr_histcombined single-vertex correlation histogram
avg_neighbor_corraverage nearest-neighbor correlation
avg_combined_corraverage combined single-vertex correlation
Notes
If enabled during compilation, this algorithm runs in parallel.
Examples
>>> def sample_k(max): ... accept = False ... while not accept: ... i = np.random.randint(1, max + 1) ... j = np.random.randint(1, max + 1) ... accept = np.random.random() < (sin(i / pi) * sin(j / pi) + 1) / 2 ... return i,j ... >>> g = gt.random_graph(10000, lambda: sample_k(40)) >>> h = gt.combined_corr_hist(g, "in", "out") >>> clf() >>> xlabel("In-degree") Text(...) >>> ylabel("Out-degree") Text(...) >>> imshow(h[0].T, interpolation="nearest", origin="lower") <...> >>> colorbar() <...> >>> savefig("combined_corr.svg")
Combined in/out-degree correlation histogram.#