graph_tool.stats.edge_hist#
- graph_tool.stats.edge_hist(g, eprop, bins=[0, 1], float_count=True)[source]#
Return the edge histogram of the given property.
- Parameters:
- g
Graph Graph to be used.
- eprop
EdgePropertyMap Edge property to be used for the histogram.
- binslist of bins (optional, default: [0, 1])
List of bins to be used for the histogram. The values given represent the edges of the bins (i.e. lower and upper bounds). If the list contains two values, this will be used to automatically create an appropriate bin range, with a constant width given by the second value, and starting from the first value.
- float_countbool (optional, default: True)
If True, the counts in each histogram bin will be returned as floats. If False, they will be returned as integers.
- g
- Returns:
- counts
numpy.ndarray The bin counts.
- bins
numpy.ndarray The bin edges.
- counts
See also
vertex_histVertex histograms.
vertex_averageAverage of vertex properties, degrees.
edge_averageAverage of edge properties.
distance_histogramShortest-distance histogram.
Notes
The algorithm runs in \(O(|E|)\) time.
If enabled during compilation, this algorithm runs in parallel.
Examples
>>> from numpy import arange >>> from numpy.random import random >>> g = gt.random_graph(1000, lambda: (5, 5)) >>> eprop = g.new_edge_property("double") >>> eprop.get_array()[:] = random(g.num_edges()) >>> print(gt.edge_hist(g, eprop, linspace(0, 1, 11))) [array([525., 504., 502., 502., 467., 499., 531., 471., 520., 479.]), array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])]