graph_tool.inference.DynamicsBlockStateBase#
- class graph_tool.inference.DynamicsBlockStateBase(g, s, t, x=None, aE=nan, nested=True, state_args={}, bstate=None, self_loops=False, **kwargs)[source]#
Bases:
UncertainBaseStateBase state for network reconstruction based on dynamical data, using the stochastic block model as a prior. This class is not meant to be instantiated directly, only indirectly via one of its subclasses.
Methods
collect_marginal([g])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraph during MCMC runs.
copy(**kwargs)Return a copy of the state.
entropy([latent_edges, density])Return the entropy, i.e. negative log-likelihood.
Return the underlying block state, which can be either
BlockStateorNestedBlockState.get_edge_prob(u, v, x[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
Return the current inferred graph.
get_x()Return latent edge covariates.
mcmc_sweep([r, multiflip])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges.
multiflip_mcmc_sweep(**kwargs)Alias for
mcmc_sweep()withmultiflip=True.set_params(params)Sets the model parameters via the dictionary
params.set_state(g, w)virtual_add_edge(u, v[, entropy_args])virtual_remove_edge(u, v[, entropy_args])- collect_marginal(g=None)[source]#
Collect marginal inferred network during MCMC runs.
- Parameters:
- g
Graph(optional, default:None) Previous marginal graph.
- g
- Returns:
- g
Graph New marginal graph, with internal edge
EdgePropertyMap"eprob", containing the marginal probabilities for each edge.
- g
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)\]where \(P(\boldsymbol A|\boldsymbol D)\) is the posterior probability given the data.
- collect_marginal_multigraph(g=None)#
Collect marginal latent multigraph during MCMC runs.
- Parameters:
- g
Graph(optional, default:None) Previous marginal multigraph.
- g
- Returns:
- g
Graph New marginal graph, with internal edge
EdgePropertyMap"w"and"wcount", containing the edge multiplicities and their respective counts.
- g
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
- entropy(latent_edges=True, density=True, **kwargs)#
Return the entropy, i.e. negative log-likelihood.
- get_block_state()#
Return the underlying block state, which can be either
BlockStateorNestedBlockState.
- get_edge_prob(u, v, x, entropy_args={}, epsilon=1e-08)[source]#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_graph()#
Return the current inferred graph.
- mcmc_sweep(r=0.5, multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges. The parameter
rcontrols the probability with which edge move will be attempted, instead of partition moves. The remaining keyword parameters will be passed tomcmc_sweep()ormultiflip_mcmc_sweep(), ifmultiflip=True.
- multiflip_mcmc_sweep(**kwargs)#
Alias for
mcmc_sweep()withmultiflip=True.
- set_state(g, w)#
- virtual_add_edge(u, v, entropy_args={})#
- virtual_remove_edge(u, v, entropy_args={})#