graph_tool.inference.PseudoCIsingBlockState#
- class graph_tool.inference.PseudoCIsingBlockState(*args, **kwargs)[source]#
Bases:
IsingBaseBlockStateState for network reconstruction based on the equilibrium configurations of the continuous Ising model, using the Pseudolikelihood approximation and the stochastic block model as a prior.
See documentation for
IsingBaseBlockStatefor details. Note that in this model “time-series” should be interpreted as a set of uncorrelated samples, not a temporal sequence. Additionally, thesparameter should contain property maps of typevector<double>, with values in the range \([-1,1]\).Methods
collect_marginal([g])Collect marginal inferred network during MCMC runs.
Collect marginal latent multigraph during MCMC runs.
copy(**kwargs)Return a copy of the state.
entropy([latent_edges, density])Return the entropy, i.e. negative log-likelihood.
Return the underlying block state, which can be either
BlockStateorNestedBlockState.get_edge_prob(u, v, x[, entropy_args, epsilon])Return conditional posterior log-probability of edge \((u,v)\).
get_edges_prob(elist[, entropy_args, epsilon])Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
Return the current inferred graph.
get_x()Return edge couplings.
mcmc_sweep([r, p, pstep, h, hstep, xstep, ...])Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges.
multiflip_mcmc_sweep(**kwargs)Alias for
mcmc_sweep()withmultiflip=True.set_params(params)Sets the model parameters via the dictionary
params.set_state(g, w)virtual_add_edge(u, v[, entropy_args])virtual_remove_edge(u, v[, entropy_args])- collect_marginal(g=None)#
Collect marginal inferred network during MCMC runs.
- Parameters:
- g
Graph(optional, default:None) Previous marginal graph.
- g
- Returns:
- g
Graph New marginal graph, with internal edge
EdgePropertyMap"eprob", containing the marginal probabilities for each edge.
- g
Notes
The posterior marginal probability of an edge \((i,j)\) is defined as
\[\pi_{ij} = \sum_{\boldsymbol A}A_{ij}P(\boldsymbol A|\boldsymbol D)\]where \(P(\boldsymbol A|\boldsymbol D)\) is the posterior probability given the data.
- collect_marginal_multigraph(g=None)#
Collect marginal latent multigraph during MCMC runs.
- Parameters:
- g
Graph(optional, default:None) Previous marginal multigraph.
- g
- Returns:
- g
Graph New marginal graph, with internal edge
EdgePropertyMap"w"and"wcount", containing the edge multiplicities and their respective counts.
- g
Notes
The mean posterior marginal multiplicity distribution of a multi-edge \((i,j)\) is defined as
\[\pi_{ij}(w) = \sum_{\boldsymbol G}\delta_{w,G_{ij}}P(\boldsymbol G|\boldsymbol D)\]where \(P(\boldsymbol G|\boldsymbol D)\) is the posterior probability of a multigraph \(\boldsymbol G\) given the data.
- copy(**kwargs)#
Return a copy of the state.
- entropy(latent_edges=True, density=True, **kwargs)#
Return the entropy, i.e. negative log-likelihood.
- get_block_state()#
Return the underlying block state, which can be either
BlockStateorNestedBlockState.
- get_edge_prob(u, v, x, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of edge \((u,v)\).
- get_edges_prob(elist, entropy_args={}, epsilon=1e-08)#
Return conditional posterior log-probability of an edge list, with shape \((E,2)\).
- get_graph()#
Return the current inferred graph.
- get_x()#
Return edge couplings.
- mcmc_sweep(r=0.5, p=0.1, pstep=0.1, h=0.1, hstep=1, xstep=0.1, multiflip=True, **kwargs)#
Perform sweeps of a Metropolis-Hastings acceptance-rejection sampling MCMC to sample network partitions and latent edges. The parameter
rcontrols the probability with which edge move will be attempted, instead of partition moves. The parameterhcontrols the relative probability with which moves for the parametersr_vwill be attempted, andhstepis the size of the step. The parameterpcontrols the relative probability with which moves for the parametersglobal_betaandrwill be attempted, andpstepis the size of the step. The paramterxstepdetermines the size of the attempted steps for the edge coupling parameters.The remaining keyword parameters will be passed to
mcmc_sweep()ormultiflip_mcmc_sweep(), ifmultiflip=True.
- multiflip_mcmc_sweep(**kwargs)#
Alias for
mcmc_sweep()withmultiflip=True.
- set_params(params)#
Sets the model parameters via the dictionary
params.
- set_state(g, w)#
- virtual_add_edge(u, v, entropy_args={})#
- virtual_remove_edge(u, v, entropy_args={})#